Namespaces
Variants
Actions

Difference between revisions of "Linear algebraic group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex)
m (mr,zbl,msc, typos)
Line 1: Line 1:
 +
 
{{TEX|done}}
 
{{TEX|done}}
 +
{{MSC|14|14L}}
  
An
+
A ''linear algebraic group'' is
 +
an
 
[[Algebraic group|algebraic group]] that is isomorphic to an algebraic
 
[[Algebraic group|algebraic group]] that is isomorphic to an algebraic
 
subgroup of a
 
subgroup of a
Line 31: Line 34:
 
linear algebraic groups over arbitrary fields of characteristic zero
 
linear algebraic groups over arbitrary fields of characteristic zero
 
(see
 
(see
[[#References|[6]]]). For fields of non-zero characteristic the method
+
{{Cite|Ch}}). For fields of non-zero characteristic the method
 
of Lie algebras is less effective, so there naturally arose the need
 
of Lie algebras is less effective, so there naturally arose the need
 
for a global investigation of linear algebraic groups by means of
 
for a global investigation of linear algebraic groups by means of
 
methods of algebraic geometry. The foundations of a global
 
methods of algebraic geometry. The foundations of a global
 
investigation of linear algebraic groups were laid by A. Borel (see
 
investigation of linear algebraic groups were laid by A. Borel (see
[[#References|[2]]]), after which the theory of linear algebraic
+
{{Cite|Bo2}}), after which the theory of linear algebraic
 
groups acquired the form of an orderly discipline (see
 
groups acquired the form of an orderly discipline (see
[[#References|[8]]]). One of the main problems in the theory of linear
+
{{Cite|Ch3}}). One of the main problems in the theory of linear
 
algebraic groups is that of classifying linear algebraic groups up to
 
algebraic groups is that of classifying linear algebraic groups up to
 
isomorphism. To some extent this problem reduces to the classification
 
isomorphism. To some extent this problem reduces to the classification
Line 48: Line 51:
 
connected semi-simple linear algebraic groups over an algebraically
 
connected semi-simple linear algebraic groups over an algebraically
 
closed field of arbitrary characteristic (see
 
closed field of arbitrary characteristic (see
[[#References|[7]]],
+
{{Cite|Ch2}},
[[#References|[17]]]). This classification is analogous to the
+
{{Cite|Hu}}). This classification is analogous to the
 
classification of Cartan–Killing of complex semi-simple Lie algebras
 
classification of Cartan–Killing of complex semi-simple Lie algebras
 
(cf.
 
(cf.
Line 72: Line 75:
 
[[Bruhat decomposition|Bruhat decomposition]] of $G$ gives insight
 
[[Bruhat decomposition|Bruhat decomposition]] of $G$ gives insight
 
into the purely group-theoretical aspects of semi-simple groups (see
 
into the purely group-theoretical aspects of semi-simple groups (see
[[#References|[1]]],
+
{{Cite|Bo}},
[[#References|[7]]],
+
{{Cite|Ch2}},
[[#References|[17]]]). The final classification of semi-simple groups
+
{{Cite|Hu}}). The final classification of semi-simple groups
 
does not depend on the characteristic of the ground field and
 
does not depend on the characteristic of the ground field and
 
therefore coincides with the classification of complex semi-simple
 
therefore coincides with the classification of complex semi-simple
Line 109: Line 112:
 
[[Kneser–Tits hypothesis|Kneser–Tits hypothesis]] that if ${\rm rank}_k\;G > 0$, then
 
[[Kneser–Tits hypothesis|Kneser–Tits hypothesis]] that if ${\rm rank}_k\;G > 0$, then
 
$G_k$ is generated by unipotent elements (see
 
$G_k$ is generated by unipotent elements (see
[[#References|[13]]]). In general it has been proved false (see
+
{{Cite|Ti2}}). In general it has been proved false (see
[[#References|[16]]]). The role of a Borel subgroup in the case of an
+
{{Cite|Pl3}}). The role of a Borel subgroup in the case of an
 
arbitrary field $k$ is played by a minimal parabolic $k$-subgroup,
 
arbitrary field $k$ is played by a minimal parabolic $k$-subgroup,
 
that is, a subgroup of $G$ containing a Borel subgroup which is
 
that is, a subgroup of $G$ containing a Borel subgroup which is
Line 116: Line 119:
 
the root system with respect to a maximal $k$-split torus in $G$ and a
 
the root system with respect to a maximal $k$-split torus in $G$ and a
 
relative Weyl group (see
 
relative Weyl group (see
[[#References|[3]]]). If $G$ has a $k$-split maximal torus, then these
+
{{Cite|Bo3}}). If $G$ has a $k$-split maximal torus, then these
 
structural elements do not depend on the field $k$ and also determine
 
structural elements do not depend on the field $k$ and also determine
 
the group up to $k$-isomorphism. Groups that have $k$-split maximal
 
the group up to $k$-isomorphism. Groups that have $k$-split maximal
Line 124: Line 127:
 
$k$-split groups. Chevalley proved that every semi-simple group has a
 
$k$-split groups. Chevalley proved that every semi-simple group has a
 
split $k$-form (even "a form over Z" , see
 
split $k$-form (even "a form over Z" , see
[[#References|[7]]],
+
{{Cite|Ch2}},
[[#References|[14]]]).
+
{{Cite|St}}).
  
 
In the general case Borel and J. Tits
 
In the general case Borel and J. Tits
[[#References|[3]]] proved the existence of an analogue of the Bruhat
+
{{Cite|Bo3}} proved the existence of an analogue of the Bruhat
 
decomposition for a group $G_k$, in which the role of the Borel
 
decomposition for a group $G_k$, in which the role of the Borel
 
subgroups is played by the groups of $k$-rational points of minimal
 
subgroups is played by the groups of $k$-rational points of minimal
Line 139: Line 142:
 
$k$, its $k$-index and the semi-simple $k$-anisotropic kernel (see
 
$k$, its $k$-index and the semi-simple $k$-anisotropic kernel (see
 
[[Anisotropic kernel|Anisotropic kernel]]) (see
 
[[Anisotropic kernel|Anisotropic kernel]]) (see
[[#References|[9]]]). In some cases it has been possible to obtain a
+
{{Cite|Ti}}). In some cases it has been possible to obtain a
 
classification of $k$-anisotropic semi-simple groups. For example,
 
classification of $k$-anisotropic semi-simple groups. For example,
 
over a finite field there are no anisotropic semi-simple groups, and
 
over a finite field there are no anisotropic semi-simple groups, and
Line 149: Line 152:
 
[[Tits system|Tits system]], which is a deep axiomatic generalization
 
[[Tits system|Tits system]], which is a deep axiomatic generalization
 
of the Bruhat decomposition in the classical case (see
 
of the Bruhat decomposition in the classical case (see
[[#References|[13]]]).
+
{{Cite|Ti2}}).
  
 
Among other general results one should mention Grothendieck's results
 
Among other general results one should mention Grothendieck's results
Line 155: Line 158:
 
are defined over $k$, and that a connected reductive linear algebraic
 
are defined over $k$, and that a connected reductive linear algebraic
 
group over $k$ is unirational over $k$, as an algebraic variety (see
 
group over $k$ is unirational over $k$, as an algebraic variety (see
[[#References|[1]]],
+
{{Cite|Bo}},
[[#References|[10]]],
+
{{Cite|DeGr}},
[[#References|[12]]]).
+
{{Cite|Pl2}}).
  
 
If $G$ is defined over an algebraic number field or over a field of
 
If $G$ is defined over an algebraic number field or over a field of
Line 164: Line 167:
 
the arithmetic theory of linear algebraic groups (see
 
the arithmetic theory of linear algebraic groups (see
 
[[Linear algebraic groups, arithmetic theory of|Linear algebraic groups, arithmetic theory of]],
 
[[Linear algebraic groups, arithmetic theory of|Linear algebraic groups, arithmetic theory of]],
[[#References|[12]]]).
+
{{Cite|Pl2}}).
  
 
The ideas and techniques of linear algebraic groups have been used to
 
The ideas and techniques of linear algebraic groups have been used to
 
study arbitrary linear groups, which has led to one of the fundamental
 
study arbitrary linear groups, which has led to one of the fundamental
 
methods in the theory of linear groups (see
 
methods in the theory of linear groups (see
[[#References|[11]]]).
+
{{Cite|Pl}}).
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD>
 
<TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969)</TD>
 
</TR><TR><TD valign="top">[2]</TD>
 
<TD valign="top"> A. Borel, "Groupes linéaires algébriques" ''Ann. of Math. (2)'' , '''64''' (1956) pp. 20–82</TD>
 
</TR><TR><TD valign="top">[3]</TD>
 
<TD valign="top"> A. Borel, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150</TD>
 
</TR><TR><TD valign="top">[4]</TD>
 
<TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959)</TD>
 
</TR><TR><TD valign="top">[5]</TD>
 
<TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964)</TD>
 
</TR><TR><TD valign="top">[6]</TD>
 
<TD valign="top"> C. Chevalley, "Théorie des groupes de Lie" , '''2''' , Hermann (1951)</TD>
 
</TR><TR><TD valign="top">[7]</TD>
 
<TD valign="top"> C. Chevalley, "Classification des groupes de Lie algébriques" , '''1–2''' , Ecole Norm. Sup.  (1956–1958)</TD>
 
</TR><TR><TD valign="top">[8]</TD>
 
<TD valign="top"> C. Chevalley, "La théorie des groupes algébriques" J.A. Todd (ed.) , ''Proc. Internat. Congress Mathematicians (Edinburgh, 1958)'' , Cambridge Univ. Press (1960) pp. 53–68</TD>
 
</TR><TR><TD valign="top">[9]</TD>
 
<TD valign="top"> J. Tits, "Classification of algebraic simple groups" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc.  (1966) pp. 33–62</TD>
 
</TR><TR><TD valign="top">[10]</TD>
 
<TD valign="top"> M. Demazure, A. Grothendieck, "Schémas en groupes I-III" , ''Lect. notes in math.'' , '''151–153''' , Springer (1970)</TD>
 
</TR><TR><TD valign="top">[11]</TD>
 
<TD valign="top"> V.P. Platonov, "The theory of algebraic linear groups and periodic groups" ''Transl. Amer. Math. Soc. (2)'' , '''69''' (1968) pp. 61–110 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''30''' (1966) pp. 573–620</TD>
 
</TR><TR><TD valign="top">[12]</TD>
 
<TD valign="top"> V.P. Platonov, "Algebraic groups" ''J. Soviet Math.'' , '''4''' : 5 (1975) pp. 463–482 ''Itogi Nauk. i Tekhn. Algebra Topol. Geom.'' , '''11''' (1974) pp. 5–36</TD>
 
</TR><TR><TD valign="top">[13]</TD>
 
<TD valign="top"> J. Tits, "Algebraic and abstract simple groups" ''Ann. of Math. (2)'' , '''80''' (1964) pp. 313–329</TD>
 
</TR><TR><TD valign="top">[14]</TD>
 
<TD valign="top"> R.G. Steinberg, "Lectures on Chevalley groups" , Yale Univ. Press (1968)</TD>
 
</TR><TR><TD valign="top">[15a]</TD>
 
<TD valign="top"> F. Bruhat, J. Tits, "$BN$ paires de type affine et données radicielles" ''C.R. Acad. Sci. Paris'' , '''263''' (1966) pp. 598–601</TD>
 
</TR><TR><TD valign="top">[15b]</TD>
 
<TD valign="top"> F. Bruhat, J. Tits, "Groupes simples résiduellement déployés sur un corps local" ''C.R. Acad. Sci. Paris'' , '''263''' (1966) pp. 766–768</TD>
 
</TR><TR><TD valign="top">[15c]</TD>
 
<TD valign="top"> F. Bruhat, J. Tits, "Groupes algébriques simples déployés sur un corps local" ''C.R. Acad. Sci. Paris'' , '''263''' (1966) pp. 822–825</TD>
 
</TR><TR><TD valign="top">[15d]</TD>
 
<TD valign="top"> F. Bruhat, J. Tits, "Groupes algébriques simples déployés sur un corps local: Cohomologie galoisienne, décompositions d'Iwasawa et de Cartan" ''C.R. Acad. Sci. Paris'' , '''263''' (1966) pp. 867–869</TD>
 
</TR><TR><TD valign="top">[16]</TD>
 
<TD valign="top"> V.P. Platonov, "The Tannaka–Artin problem and reduced $K$-theory" ''Math. USSR Izv.'' , '''10''' (1976) pp. 211–243 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''40''' : 2 (1976) pp. 227–261</TD>
 
</TR><TR><TD valign="top">[17]</TD>
 
<TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1981)</TD>
 
</TR></table>
 
 
 
====Comments====
 
 
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD>
+
{|
<TD valign="top"> C. Chevalley, "Certains schémas de groupes semi-simples" , ''Sem. Bourbaki Exp. 219'' (1960–1061)</TD>
+
|-
</TR><TR><TD valign="top">[a2]</TD>
+
|valign="top"|{{Ref|Bo}}||valign="top"| A. Borel, "Linear algebraic groups", Benjamin (1969)  {{MR|0251042}}  {{ZBL|0206.49801}} {{ZBL|0186.33201}}               
<TD valign="top"> A. Borel, T.A. Springer, "Rationality properties of linear algebraic groups II" ''Tohoku Math. J.'' , '''20''' (1968) pp. 443–497</TD>
+
|-
</TR><TR><TD valign="top">[a3]</TD>
+
|valign="top"|{{Ref|Bo2}}||valign="top"| A. Borel, "Groupes linéaires algébriques" ''Ann. of Math. (2)'', '''64''' (1956) pp. 20–82 {{MR|0093006}}
  <TD valign="top"> F. Bruhat, J. Tits, "Groupes réductif sur un corps locale I" ''Publ. Math.IHES'' , '''41''' (1972) pp. 5–251</TD>
+
|-
</TR><TR><TD valign="top">[a4]</TD>
+
|valign="top"|{{Ref|Bo3}}||valign="top"| A. Borel, "Groupes réductifs" ''Publ. Math. IHES'', '''27''' (1965) pp. 55–150  {{MR|0207712}}  {{ZBL|0145.17402}}               
<TD valign="top"> F. Bruhat, J. Tits, "Groupes réductif sur un corps locale II" ''Publ. Math.IHES'' , '''60''' (1984) pp. 5–184</TD>
+
|-
</TR><TR><TD valign="top">[a5]</TD>
+
|valign="top"|{{Ref|BoSp}}||valign="top"| A. Borel, T.A. Springer, "Rationality properties of linear algebraic groups II" ''Tohoku Math. J.'', '''20''' (1968) pp. 443–497 {{MR|0244259}}  {{ZBL|0211.53302}}               
<TD valign="top"> F. Bruhat, J. Tits, "Groupes algébriques sur un corps locale III" ''J. Fac. Sci. Tokyo Univ.'' , '''34''' (1987) pp. 671–698</TD>
+
|-
</TR></table>
+
|valign="top"|{{Ref|BrTi}}||valign="top"| F. Bruhat, J. Tits, "BN paires de type affine et données radicielles" ''C.R. Acad. Sci. Paris'', '''263''' (1966) pp. 598–601    {{MR|0242833}}  {{ZBL|0214.28803}}           
 +
|-
 +
|valign="top"|{{Ref|BrTi2}}||valign="top"| F. Bruhat, J. Tits, "Groupes simples résiduellement déployés sur un corps local" ''C.R. Acad. Sci. Paris'', '''263''' (1966) pp. 766–768 {{MR|0242834}}  {{ZBL|0263.14013}}               
 +
|-
 +
|valign="top"|{{Ref|BrTi3}}||valign="top"| F. Bruhat, J. Tits, "Groupes algébriques simples sur un corps local" ''C.R. Acad. Sci. Paris'', '''263''' (1966) pp. 822–825          {{MR|0242836}} {{MR|0242835}}  {{ZBL|0263.14015}} {{ZBL|0263.1x4014}}     
 +
|-
 +
|valign="top"|{{Ref|BrTi4}}||valign="top"| F. Bruhat, J. Tits, "Groupes algébriques simples sur un corps local: Cohomologie galoisienne, décompositions d'Iwasawa et de Cartan" ''C.R. Acad. Sci. Paris'', '''263''' (1966) pp. 867–869          {{MR|0242836}}  {{ZBL|0263.14015}}     
 +
|-
 +
|valign="top"|{{Ref|BrTi5}}||valign="top"| F. Bruhat, J. Tits, "Groupes réductifs sur un corps local. I" ''Publ. Math.IHES'', '''41''' (1972) pp. 5–251             {{MR|0327923}}   
 +
|-
 +
|valign="top"|{{Ref|BrTi6}}||valign="top"| F. Bruhat, J. Tits, "Groupes réductifs sur un corps local. II" ''Publ. Math.IHES'', '''60''' (1984) pp. 5–184             {{MR|0756316}}  {{ZBL|0597.14041}}   
 +
|-
 +
|valign="top"|{{Ref|BrTi7}}||valign="top"| F. Bruhat, J. Tits, "Groupes algébriques sur un corps local. III" ''J. Fac. Sci. Tokyo Univ.'', '''34''' (1987) pp. 671–698             {{MR|0927605}}  {{ZBL|0657.20040}}   
 +
|-
 +
|valign="top"|{{Ref|Ch}}||valign="top"| C. Chevalley, "Théorie des groupes de Lie", '''2''', Hermann (1951)  {{MR|0051242}}  {{ZBL|0054.01303}}               
 +
|-
 +
|valign="top"|{{Ref|Ch3}}||valign="top"| C. Chevalley, "La théorie des groupes algébriques" J.A. Todd (ed.), ''Proc. Internat. Congress Mathematicians (Edinburgh, 1958)'', Cambridge Univ. Press (1960) pp. 53–68                 
 +
|-
 +
|valign="top"|{{Ref|DeGr}}||valign="top"| M. Demazure, A. Grothendieck, "Schémas en groupes. I-III", ''Lect. notes in math.'', '''151–153''', Springer (1970)        {{MR|0274458}} {{MR|0274459}} {{MR|0274460}}         
 +
|-
 +
|valign="top"|{{Ref|Hu}}||valign="top"| J.E. Humphreys, "Linear algebraic groups", Springer (1981)  {{ZBL|0471.20029}}               
 +
|-
 +
|valign="top"|{{Ref|Pl}}||valign="top"| V.P. Platonov, "The theory of algebraic linear groups and periodic groups" ''Transl. Amer. Math. Soc. (2)'', '''69''' (1968) pp. 61–110 ''Izv. Akad. Nauk SSSR Ser. Mat.'', '''30''' (1966) pp. 573–620                 
 +
|-
 +
|valign="top"|{{Ref|Pl2}}||valign="top"| V.P. Platonov, "Algebraic groups" ''J. Soviet Math.'', '''4''' : 5 (1975) pp. 463–482 ''Itogi Nauk. i Tekhn. Algebra Topol. Geom.'', '''11''' (1974) pp. 5–36  {{MR|0466334}}  {{ZBL|0386.20019}} {{ZBL|0305.20023}}               
 +
|-
 +
|valign="top"|{{Ref|Pl3}}||valign="top"| V.P. Platonov, "The Tannaka–Artin problem and reduced $K$-theory" ''Math. USSR Izv.'', '''10''' (1976) pp. 211–243 ''Izv. Akad. Nauk SSSR Ser. Mat.'', '''40''' : 2 (1976) pp. 227–261  {{MR|0424872}} {{MR|0412228}} {{MR|0407082}}               
 +
|-
 +
|valign="top"|{{Ref|Se}}||valign="top"| J.-P. Serre, "Groupes algébrique et corps des classes", Hermann (1959)  {{MR|0103191}}               
 +
|-
 +
|valign="top"|{{Ref|Se2}}||valign="top"| J.-P. Serre, "Cohomologie Galoisienne", Springer (1964)  {{MR|0181643}}  {{ZBL|0143.05901}} {{ZBL|0128.26303}}               
 +
|-
 +
|valign="top"|{{Ref|St}}||valign="top"| R.G. Steinberg, "Lectures on Chevalley groups", Yale Univ. Press (1968)  {{MR|0466335}}  {{ZBL|1196.22001}}               
 +
|-
 +
|valign="top"|{{Ref|Ti}}||valign="top"| J. Tits, "Classification of algebraic simple groups", ''Algebraic Groups and Discontinuous Subgroups'', ''Proc. Symp. Pure Math.'', '''9''', Amer. Math. Soc.  (1966) pp. 33–62                 
 +
|-
 +
|valign="top"|{{Ref|Ti2}}||valign="top"| J. Tits, "Algebraic and abstract simple groups" ''Ann. of Math. (2)'', '''80''' (1964) pp. 313–329  {{MR|0093006}}
 +
|-
 +
|}

Revision as of 14:31, 5 March 2012

2020 Mathematics Subject Classification: Primary: 14-XX Secondary: 14L [MSN][ZBL]

A linear algebraic group is an algebraic group that is isomorphic to an algebraic subgroup of a general linear group. An algebraic group $G$ is linear if and only if the algebraic variety $G$ is affine, that is, isomorphic to a Zariski-closed subvariety of an affine space (cf. also Zariski topology).


The theory of linear algebraic groups arose in the context of the Galois theory of solving linear differential equations by quadratures at the end of 19th century (S. Lie, E. Picard, L. Maurer), and the study of linear algebraic groups over the field of complex numbers was originally carried out by analogy with the theory of Lie groups by the method of Lie algebras. A linear algebraic group $G$ over the field of complex numbers $\mathbb C$ can be regarded as an analytic subgroup (cf. Analytic group) of a group ${\rm GL}(n,\mathbb C)$ (of invertible complex $n\times n$-matrices). The Lie algebra of $G$, defined in the usual way, is then a subalgebra of the Lie algebra of ${\rm GL}(n,\mathbb C)$. An exhaustive answer can be given to the question arising here — which Lie subalgebras correspond to algebraic (and not only analytic) subgroups of ${\rm GL}(n,\mathbb C)$ (see Lie algebra, algebraic 1)).

In the middle of the 20th century the methods of the theory of Lie groups and Lie algebras were completed and generalized by C. Chevalley. He subsequently applied these methods to the study of linear algebraic groups over arbitrary fields of characteristic zero (see [Ch]). For fields of non-zero characteristic the method of Lie algebras is less effective, so there naturally arose the need for a global investigation of linear algebraic groups by means of methods of algebraic geometry. The foundations of a global investigation of linear algebraic groups were laid by A. Borel (see [Bo2]), after which the theory of linear algebraic groups acquired the form of an orderly discipline (see [Ch3]). One of the main problems in the theory of linear algebraic groups is that of classifying linear algebraic groups up to isomorphism. To some extent this problem reduces to the classification of two types of linear algebraic groups, semi-simple and solvable, since an arbitrary linear algebraic group has a maximal connected solvable normal subgroup $H$ such that the quotient group $G/H$ is a semi-simple linear algebraic group. One of the main results in the theory of linear algebraic groups is Chevalley's classification of connected semi-simple linear algebraic groups over an algebraically closed field of arbitrary characteristic (see [Ch2], [Hu]). This classification is analogous to the classification of Cartan–Killing of complex semi-simple Lie algebras (cf. Lie algebra, semi-simple). The classification of Chevalley is based on the fact that in a semi-simple algebraic group one can construct analogues to the elements of the theory of Cartan–Killing, namely the Cartan subgroups (cf. Cartan subgroup), roots, etc. An important role is played here by Borel subgroups (cf. Borel subgroup) and maximal tori (cf. Algebraic torus).

Let $G$ be a semi-simple linear algebraic group (cf. Semi-simple algebraic group), $T$ a maximal torus, $N_G(T)$ the normalizer of $T$ in $G$ (cf. Normalizer of a subset), and let $N_G(T)/T$ be the Weyl group of $G$. The torus $T$ is contained in only finitely many Borel subgroups of $G$, which are permuted transitively under conjugation by elements of $N_G(T)$. One can construct certain monomorphisms of the additive group of the field into the Borel subgroups (containing $T$), which play the role of roots. The Bruhat decomposition of $G$ gives insight into the purely group-theoretical aspects of semi-simple groups (see [Bo], [Ch2], [Hu]). The final classification of semi-simple groups does not depend on the characteristic of the ground field and therefore coincides with the classification of complex semi-simple algebraic groups.

The classification up to $k $-isomorphism of semi-simple linear algebraic groups defined over a non-algebraically closed field $k$ is significantly more complicated; it depends essentially on the field $k$ and reduces to the classification of $k$-forms of algebraic groups (see Form of an algebraic group). The set of $k$-forms of an algebraic group $G$ defined over an algebraic closure $K$ of $k$ is in one-to-one correspondence with the one-dimensional Galois cohomology set $H^1(k,{\rm Aut}(G))$, where ${\rm Aut}(G)$ is the group of automorphisms of $G$. In those cases when the Galois group ${\rm Gal}(K/k)$ of the extension $K/k$ is known (for example, if $k$ is the field of real numbers or a finite field), this gives significant information about the forms of $G$. But the main difficulty of investigating this deep problem, which is still (1989) far from being solved, lies in the study of the $k$-structures of semi-simple linear algebraic groups.

In the case of an arbitrary field $k$, the maximal $k$-split tori play a role analogous to that of maximal algebraic tori in a group $G$ over an algebraically closed field. A $k$-split torus is a torus that is $k$-isomorphic to a direct product of one-dimensional groups ${\rm GL(1,k)}$ which are defined over $k$. Maximal $k$-split tori in $G$ are conjugate by elements of the group of $k$-rational points $G_k$ and their dimension is called the $k$-rank of $G$ (denoted by ${\rm rank}_k\;G$). If ${\rm rank}_k\;G > 0$, then $G$ is said to be $k$-isotropic, otherwise $k$-anisotropic. A semi-simple group $G$ is $k$-isotropic if and only if $G_k$ has unipotent elements other than the identity. For a simple simply-connected group $G$ there was the Kneser–Tits hypothesis that if ${\rm rank}_k\;G > 0$, then $G_k$ is generated by unipotent elements (see [Ti2]). In general it has been proved false (see [Pl3]). The role of a Borel subgroup in the case of an arbitrary field $k$ is played by a minimal parabolic $k$-subgroup, that is, a subgroup of $G$ containing a Borel subgroup which is defined over $k$ and is minimal for these properties. One can define the root system with respect to a maximal $k$-split torus in $G$ and a relative Weyl group (see [Bo3]). If $G$ has a $k$-split maximal torus, then these structural elements do not depend on the field $k$ and also determine the group up to $k$-isomorphism. Groups that have $k$-split maximal tori are said to be $k$-split or Chevalley groups (cf. Chevalley group). Chevalley's classification of semi-simple groups over an algebraically closed field carries over to $k$-split groups. Chevalley proved that every semi-simple group has a split $k$-form (even "a form over Z" , see [Ch2], [St]).

In the general case Borel and J. Tits [Bo3] proved the existence of an analogue of the Bruhat decomposition for a group $G_k$, in which the role of the Borel subgroups is played by the groups of $k$-rational points of minimal parabolic $k$-subgroups. This makes it possible to reduce to a large extent the classification of semi-simple linear algebraic groups of positive $k$-rank to the classification of semi-simple groups of $k$-rank zero, that is, to the classification of $k$-anisotropic groups. Namely, a semi-simple group $G$ is defined up to $k$-isomorphism by its isomorphism class over the algebraic closure of $k$, its $k$-index and the semi-simple $k$-anisotropic kernel (see Anisotropic kernel) (see [Ti]). In some cases it has been possible to obtain a classification of $k$-anisotropic semi-simple groups. For example, over a finite field there are no anisotropic semi-simple groups, and for a wide class of local fields $k$ it has been proved (see ) that every $k$-anisotropic simple linear algebraic group $G$ is an inner form of type ${\rm A}_n$, that is, in the simply-connected case $G_k$ is isomorphic to ${\rm SL}(1,D)$ where $D$ is a skew-field of finite degree over $k$. The basis of these results is the concept of a Tits system, which is a deep axiomatic generalization of the Bruhat decomposition in the classical case (see [Ti2]).

Among other general results one should mention Grothendieck's results that a linear algebraic group defined over $k$ has maximal tori that are defined over $k$, and that a connected reductive linear algebraic group over $k$ is unirational over $k$, as an algebraic variety (see [Bo], [DeGr], [Pl2]).

If $G$ is defined over an algebraic number field or over a field of algebraic functions in one variable, then there arise problems about the arithmetic properties of $G$, the study of which is the subject of the arithmetic theory of linear algebraic groups (see Linear algebraic groups, arithmetic theory of, [Pl2]).

The ideas and techniques of linear algebraic groups have been used to study arbitrary linear groups, which has led to one of the fundamental methods in the theory of linear groups (see [Pl]).

References

[Bo] A. Borel, "Linear algebraic groups", Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
[Bo2] A. Borel, "Groupes linéaires algébriques" Ann. of Math. (2), 64 (1956) pp. 20–82 MR0093006
[Bo3] A. Borel, "Groupes réductifs" Publ. Math. IHES, 27 (1965) pp. 55–150 MR0207712 Zbl 0145.17402
[BoSp] A. Borel, T.A. Springer, "Rationality properties of linear algebraic groups II" Tohoku Math. J., 20 (1968) pp. 443–497 MR0244259 Zbl 0211.53302
[BrTi] F. Bruhat, J. Tits, "BN paires de type affine et données radicielles" C.R. Acad. Sci. Paris, 263 (1966) pp. 598–601 MR0242833 Zbl 0214.28803
[BrTi2] F. Bruhat, J. Tits, "Groupes simples résiduellement déployés sur un corps local" C.R. Acad. Sci. Paris, 263 (1966) pp. 766–768 MR0242834 Zbl 0263.14013
[BrTi3] F. Bruhat, J. Tits, "Groupes algébriques simples sur un corps local" C.R. Acad. Sci. Paris, 263 (1966) pp. 822–825 MR0242836 MR0242835 Zbl 0263.14015 Zbl 0263.1x4014
[BrTi4] F. Bruhat, J. Tits, "Groupes algébriques simples sur un corps local: Cohomologie galoisienne, décompositions d'Iwasawa et de Cartan" C.R. Acad. Sci. Paris, 263 (1966) pp. 867–869 MR0242836 Zbl 0263.14015
[BrTi5] F. Bruhat, J. Tits, "Groupes réductifs sur un corps local. I" Publ. Math.IHES, 41 (1972) pp. 5–251 MR0327923
[BrTi6] F. Bruhat, J. Tits, "Groupes réductifs sur un corps local. II" Publ. Math.IHES, 60 (1984) pp. 5–184 MR0756316 Zbl 0597.14041
[BrTi7] F. Bruhat, J. Tits, "Groupes algébriques sur un corps local. III" J. Fac. Sci. Tokyo Univ., 34 (1987) pp. 671–698 MR0927605 Zbl 0657.20040
[Ch] C. Chevalley, "Théorie des groupes de Lie", 2, Hermann (1951) MR0051242 Zbl 0054.01303
[Ch3] C. Chevalley, "La théorie des groupes algébriques" J.A. Todd (ed.), Proc. Internat. Congress Mathematicians (Edinburgh, 1958), Cambridge Univ. Press (1960) pp. 53–68
[DeGr] M. Demazure, A. Grothendieck, "Schémas en groupes. I-III", Lect. notes in math., 151–153, Springer (1970) MR0274458 MR0274459 MR0274460
[Hu] J.E. Humphreys, "Linear algebraic groups", Springer (1981) Zbl 0471.20029
[Pl] V.P. Platonov, "The theory of algebraic linear groups and periodic groups" Transl. Amer. Math. Soc. (2), 69 (1968) pp. 61–110 Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966) pp. 573–620
[Pl2] V.P. Platonov, "Algebraic groups" J. Soviet Math., 4 : 5 (1975) pp. 463–482 Itogi Nauk. i Tekhn. Algebra Topol. Geom., 11 (1974) pp. 5–36 MR0466334 Zbl 0386.20019 Zbl 0305.20023
[Pl3] V.P. Platonov, "The Tannaka–Artin problem and reduced $K$-theory" Math. USSR Izv., 10 (1976) pp. 211–243 Izv. Akad. Nauk SSSR Ser. Mat., 40 : 2 (1976) pp. 227–261 MR0424872 MR0412228 MR0407082
[Se] J.-P. Serre, "Groupes algébrique et corps des classes", Hermann (1959) MR0103191
[Se2] J.-P. Serre, "Cohomologie Galoisienne", Springer (1964) MR0181643 Zbl 0143.05901 Zbl 0128.26303
[St] R.G. Steinberg, "Lectures on Chevalley groups", Yale Univ. Press (1968) MR0466335 Zbl 1196.22001
[Ti] J. Tits, "Classification of algebraic simple groups", Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math., 9, Amer. Math. Soc. (1966) pp. 33–62
[Ti2] J. Tits, "Algebraic and abstract simple groups" Ann. of Math. (2), 80 (1964) pp. 313–329 MR0093006
How to Cite This Entry:
Linear algebraic group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_algebraic_group&oldid=21514
This article was adapted from an original article by V.P. Platonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article