Namespaces
Variants
Actions

Difference between revisions of "Cocktail party graph"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (+ category)
m (→‎References: isbn link)
 
Line 6: Line 6:
  
 
====References====
 
====References====
* Biggs, Norman ''Algebraic graph theory'' 2nd ed. Cambridge University Press (1994) ISBN 0-521-45897-8 {{ZBL|0797.05032}}
+
* Biggs, Norman ''Algebraic graph theory'' 2nd ed. Cambridge University Press (1994) {{ISBN|0-521-45897-8}} {{ZBL|0797.05032}}
 
[[Category:Graph theory]]
 
[[Category:Graph theory]]

Latest revision as of 17:37, 27 June 2023


hyperoctahedral graph

A family of graphs $H_s$ formed from the complete graph $K_{2s}$ on $2s$ vertices by removing $s$ disjoint edges: equivalently, the complete multipartite graph $K_{2,2,\ldots,2}$.

References

  • Biggs, Norman Algebraic graph theory 2nd ed. Cambridge University Press (1994) ISBN 0-521-45897-8 Zbl 0797.05032
How to Cite This Entry:
Cocktail party graph. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cocktail_party_graph&oldid=52588