Difference between revisions of "Blaschke factor"
m (AUTOMATIC EDIT (latexlist): Replaced 22 formulas out of 22 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
(details) |
||
Line 9: | Line 9: | ||
Let $D$ be the open unit disc in the complex plane $\mathbf{C}$. A [[Holomorphic function|holomorphic function]] | Let $D$ be the open unit disc in the complex plane $\mathbf{C}$. A [[Holomorphic function|holomorphic function]] | ||
− | \begin{equation*} f ( z ) = \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad | a | | + | \begin{equation*} f ( z ) = \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad | a | < 1, \end{equation*} |
on $D$ is called a Blaschke factor if it occurs in a [[Blaschke product|Blaschke product]] | on $D$ is called a Blaschke factor if it occurs in a [[Blaschke product|Blaschke product]] | ||
− | \begin{equation*} \prod _ { j = 1 } ^ { \infty } \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad \sum ( 1 - | a _ { j } | ) | + | \begin{equation*} \prod _ { j = 1 } ^ { \infty } \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad \sum ( 1 - | a _ { j } | ) < \infty . \end{equation*} |
The defining properties of a Blaschke factor are: | The defining properties of a Blaschke factor are: | ||
Line 34: | Line 34: | ||
====References==== | ====References==== | ||
− | <table><tr><td valign="top">[a1]</td> <td valign="top"> S.D. Fischer, "Function thory on planar domains" , Wiley (1983)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> M. Voichick, L. Zalcman, "Inner and outer functions on Riemann Surfaces" ''Proc. Amer. Math. Soc.'' , '''16''' (1965) pp. 1200–1204</td></tr></table> | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> S.D. Fischer, "Function thory on planar domains" , Wiley (1983)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> M. Voichick, L. Zalcman, "Inner and outer functions on Riemann Surfaces" ''Proc. Amer. Math. Soc.'' , '''16''' (1965) pp. 1200–1204</td></tr> | ||
+ | </table> |
Latest revision as of 20:48, 22 January 2024
Let $D$ be the open unit disc in the complex plane $\mathbf{C}$. A holomorphic function
\begin{equation*} f ( z ) = \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad | a | < 1, \end{equation*}
on $D$ is called a Blaschke factor if it occurs in a Blaschke product
\begin{equation*} \prod _ { j = 1 } ^ { \infty } \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad \sum ( 1 - | a _ { j } | ) < \infty . \end{equation*}
The defining properties of a Blaschke factor are:
a) a Blaschke factor has precisely one zero in $D$;
b) a Blaschke factor has norm $1$ on the boundary of $D$.
The properties a)–b) may be used to define Blaschke factors on a Dirichlet domain $\Omega$ in a Riemann surface as $f ( z ) = e ^ { - ( G ( z , a ) + i \tilde{G} ( z , a ) ) }$. Here, $G$ is the Green function for $\Omega$ at $a \in \Omega$ and $\tilde { G }$ is its (multiple-valued) harmonic conjugate. See [a1] for the planar case.
Thus, in general a Blaschke factor will not be single valued, but it is single valued on simply-connected domains.
Next, for functions $g$ of the Nevanlinna class (cf. Boundary properties of analytic functions), the term "Blaschke factor" is used to indicate the Blaschke product that has the same zeros as $g$. For example, on the disc $D$ one has the decomposition formula
\begin{equation*} g = B . O . \frac { S _ { 1 } } { S _ { 2 } }, \end{equation*}
where $B$ is a Blaschke product or the Blaschke factor, $O$ is the outer factor, and $S _ { 1 }$, $S _ { 2 }$ are singular inner functions; cf. [a2], Boundary properties of analytic functions; Hardy classes.
Similar decomposition theorems are known for domains in Riemann surfaces, cf. [a3].
References
[a1] | S.D. Fischer, "Function thory on planar domains" , Wiley (1983) |
[a2] | J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) |
[a3] | M. Voichick, L. Zalcman, "Inner and outer functions on Riemann Surfaces" Proc. Amer. Math. Soc. , 16 (1965) pp. 1200–1204 |
Blaschke factor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Blaschke_factor&oldid=50009