Namespaces
Variants
Actions

Difference between revisions of "Potential of a mass distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (Undo revision 48264 by Ulf Rehmann (talk))
Tag: Undo
Line 1: Line 1:
<!--
 
p0741201.png
 
$#A+1 = 59 n = 0
 
$#C+1 = 59 : ~/encyclopedia/old_files/data/P074/P.0704120 Potential of a mass distribution
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
 
{{TEX|auto}}
 
{{TEX|done}}
 
 
 
An expression of the form
 
An expression of the form
  
$$ \tag{* }
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741201.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
u ( x)  = \int\limits _ { D }
 
h ( | x - y | ) f ( y)  d v ( y) ,
 
$$
 
  
where $  D $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741202.png" /> is a bounded domain in a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741203.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741204.png" />, bounded by a closed Lyapunov surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741205.png" /> (a curve for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741206.png" />, cf. [[Lyapunov surfaces and curves|Lyapunov surfaces and curves]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741207.png" /> is the fundamental solution of the Laplace operator:
is a bounded domain in a Euclidean space $  \mathbf R  ^ {N} $,  
 
$  N \geq  2 $,  
 
bounded by a closed Lyapunov surface $  S $(
 
a curve for $  N = 2 $,  
 
cf. [[Lyapunov surfaces and curves|Lyapunov surfaces and curves]]), $  h ( | x - y | ) $
 
is the fundamental solution of the Laplace operator:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741208.png" /></td> </tr></table>
h ( | x - y | )  = \
 
\left \{
 
  
where $  \omega _ {N} = 2 \pi  ^ {N/2} / \Gamma ( N / 2 ) $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p0741209.png" /> is the area of the unit sphere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412011.png" /> is the distance between the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412013.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412014.png" /> is the volume element in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412015.png" />.
is the area of the unit sphere in $  \mathbf R  ^ {N} $,  
 
$  | x - y | $
 
is the distance between the points $  x $
 
and $  y $,  
 
and $  d v ( y) $
 
is the volume element in $  D $.
 
  
If $  f \in C  ^ {(} 1) ( \overline{D}\; ) $,  
+
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412016.png" />, then the potential is defined for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412018.png" />. In the complementary domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412019.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412020.png" /> then has derivatives of all orders and satisfies the [[Laplace equation|Laplace equation]]: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412021.png" />, that is, is a [[Harmonic function|harmonic function]]; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412022.png" /> this function is regular at infinity, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412023.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412024.png" /> the potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412025.png" /> belongs to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412026.png" /> and satisfies the [[Poisson equation|Poisson equation]]: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412027.png" />.
then the potential is defined for all $  x \in \mathbf R  ^ {N} $
 
and $  u \in C  ^ {(} 1) ( \mathbf R  ^ {N} ) $.  
 
In the complementary domain $  \overline{D}\; {}  ^ {c} $,  
 
the function $  u $
 
then has derivatives of all orders and satisfies the [[Laplace equation|Laplace equation]]: $  \Delta u = 0 $,  
 
that is, is a [[Harmonic function|harmonic function]]; for $  N \geq  3 $
 
this function is regular at infinity, $  u ( \infty ) = 0 $.  
 
In $  D $
 
the potential $  u $
 
belongs to the class $  C  ^ {(} 2) ( D) $
 
and satisfies the [[Poisson equation|Poisson equation]]: $  \Delta u = - f $.
 
  
These properties can be generalized in various ways. For example, if $  f \in L _  \infty  ( D) $,  
+
These properties can be generalized in various ways. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412028.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412033.png" /> has generalized second derivatives in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412034.png" />, and the Poisson equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412035.png" /> is satisfied almost-everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412036.png" />. Properties of potentials of an arbitrary [[Radon measure|Radon measure]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412037.png" /> concentrated on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412038.png" />-dimensional domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412039.png" /> have also been studied:
then $  u \in C ( \mathbf R  ^ {N} ) $,  
 
$  u \in C  ^  \infty  ( \overline{D}\; {}  ^ {c} ) $,  
 
$  \Delta u = 0 $
 
in $  \overline{D}\; {}  ^ {c} $,  
 
$  u $
 
has generalized second derivatives in $  D $,  
 
and the Poisson equation $  \Delta u = - f $
 
is satisfied almost-everywhere in $  D $.  
 
Properties of potentials of an arbitrary [[Radon measure|Radon measure]] $  \mu $
 
concentrated on an $  N $-
 
dimensional domain $  D $
 
have also been studied:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412040.png" /></td> </tr></table>
u ( x)  = \int\limits h ( | x - y | )  d \mu ( y) .
 
$$
 
  
Here again $  u \in C  ^  \infty  ( \overline{D}\; {}  ^ {c} ) $
+
Here again <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412042.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412044.png" /> almost-everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412045.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412046.png" /> is the derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412047.png" /> with respect to Lebesgue measure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412048.png" />. In definition (*) the fundamental solution of the Laplace operator may be replaced by an arbitrary Levi function (see [[#References|[2]]]) for a general second-order elliptic operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412049.png" /> with variable coefficients of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412050.png" />; then the properties listed above still hold with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412051.png" /> replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412052.png" /> (see [[#References|[2]]]–[[#References|[4]]]).
and $  \Delta u = 0 $
 
in $  \overline{D}\; {}  ^ {c} $,  
 
$  \Delta u = - \mu  ^  \prime  $
 
almost-everywhere in $  D $,  
 
where $  \mu  ^  \prime  $
 
is the derivative of $  \mu $
 
with respect to Lebesgue measure in $  \mathbf R  ^ {n} $.  
 
In definition (*) the fundamental solution of the Laplace operator may be replaced by an arbitrary Levi function (see [[#References|[2]]]) for a general second-order elliptic operator $  L $
 
with variable coefficients of class $  C ^ {( 0 , \lambda ) } ( \overline{D}\; ) $;  
 
then the properties listed above still hold with $  \Delta u $
 
replaced by $  L u $(
 
see [[#References|[2]]]–[[#References|[4]]]).
 
  
 
Potentials of mass distributions are applied in the solution of boundary value problems for elliptic partial differential equations (see [[#References|[2]]]–[[#References|[5]]]).
 
Potentials of mass distributions are applied in the solution of boundary value problems for elliptic partial differential equations (see [[#References|[2]]]–[[#References|[5]]]).
Line 87: Line 21:
 
For the solution of boundary value problems for parabolic partial differential equations the concept of a heat potential of the form
 
For the solution of boundary value problems for parabolic partial differential equations the concept of a heat potential of the form
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412053.png" /></td> </tr></table>
v ( x , t )  = \
 
\int\limits _ { 0 } ^ { t }  d \tau
 
\int\limits _ { D } G ( x , t ;  y, \tau ) f ( y , \tau )  d v ( y)
 
$$
 
  
is used, where $  G ( x , t ;  y , \tau ) $
+
is used, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412054.png" /> is a fundamental solution of the heat equation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412055.png" />:
is a fundamental solution of the heat equation in $  \mathbf R  ^ {N} $:
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412056.png" /></td> </tr></table>
G ( x , t ; y , \tau )  = \
 
  
\frac{1}{( 2 \sqrt \pi ) ^ {N} ( t - \tau )  ^ {N/2} }
+
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412057.png" /> is the density. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412058.png" /> and its generalizations to the case of an arbitrary second-order parabolic partial differential equation have properties similar to those given above for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074120/p07412059.png" /> (see [[#References|[3]]]–[[#References|[6]]]).
  
  \mathop{\rm exp} ^ {- | x - y | ^ {2} / 4 ( t - \tau ) } ,
+
====References====
$$
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.M. Günter,  "Potential theory and its applications to basic problems of mathematical physics" , F. Ungar (1967) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Miranda,  "Partial differential equations of elliptic type" , Springer  (1970)  (Translated from Italian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.N. [A.N. Tikhonov] Tichonoff,  A.A. Samarskii,  "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft.  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''4''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Friedman,  "Partial differential equations of parabolic type" , Prentice-Hall  (1964)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.V. Bitsadze,   "Boundary value problems for second-order elliptic equations" , North-Holland  (1968)  (Translated from Russian)</TD></TR></table>
  
and  $  f ( y , \tau ) $
 
is the density. The function  $  v ( x , t ) $
 
and its generalizations to the case of an arbitrary second-order parabolic partial differential equation have properties similar to those given above for  $  u $(
 
see [[#References|[3]]]–[[#References|[6]]]).
 
  
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.M. Günter,  "Potential theory and its applications to basic problems of mathematical physics" , F. Ungar  (1967)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Miranda,  "Partial differential equations of elliptic type" , Springer  (1970)  (Translated from Italian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.N. [A.N. Tikhonov] Tichonoff,  A.A. Samarskii,  "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft.  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.I. Smirnov,  "A course of higher mathematics" , '''4''' , Addison-Wesley  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Friedman,  "Partial differential equations of parabolic type" , Prentice-Hall  (1964)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.V. Bitsadze,  "Boundary value problems for second-order elliptic equations" , North-Holland  (1968)  (Translated from Russian)</TD></TR></table>
 
  
 
====Comments====
 
====Comments====

Revision as of 14:52, 7 June 2020

An expression of the form

(*)

where is a bounded domain in a Euclidean space , , bounded by a closed Lyapunov surface (a curve for , cf. Lyapunov surfaces and curves), is the fundamental solution of the Laplace operator:

where is the area of the unit sphere in , is the distance between the points and , and is the volume element in .

If , then the potential is defined for all and . In the complementary domain , the function then has derivatives of all orders and satisfies the Laplace equation: , that is, is a harmonic function; for this function is regular at infinity, . In the potential belongs to the class and satisfies the Poisson equation: .

These properties can be generalized in various ways. For example, if , then , , in , has generalized second derivatives in , and the Poisson equation is satisfied almost-everywhere in . Properties of potentials of an arbitrary Radon measure concentrated on an -dimensional domain have also been studied:

Here again and in , almost-everywhere in , where is the derivative of with respect to Lebesgue measure in . In definition (*) the fundamental solution of the Laplace operator may be replaced by an arbitrary Levi function (see [2]) for a general second-order elliptic operator with variable coefficients of class ; then the properties listed above still hold with replaced by (see [2][4]).

Potentials of mass distributions are applied in the solution of boundary value problems for elliptic partial differential equations (see [2][5]).

For the solution of boundary value problems for parabolic partial differential equations the concept of a heat potential of the form

is used, where is a fundamental solution of the heat equation in :

and is the density. The function and its generalizations to the case of an arbitrary second-order parabolic partial differential equation have properties similar to those given above for (see [3][6]).

References

[1] N.M. Günter, "Potential theory and its applications to basic problems of mathematical physics" , F. Ungar (1967) (Translated from French)
[2] C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)
[3] A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)
[4] V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) (Translated from Russian)
[5] A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)
[6] A.V. Bitsadze, "Boundary value problems for second-order elliptic equations" , North-Holland (1968) (Translated from Russian)


Comments

A Levi function of a linear partial differential equation is also called a fundamental solution of this equation, or a parametrix of this equation. This function is named after E.E. Levi, who anticipated [a1], [a2] what is known today as the parametrix method.

See also Potential theory; Logarithmic potential; Newton potential; Non-linear potential; Riesz potential; Bessel potential.

References

[a1] E.E. Levi, "Sulle equazioni lineari alle derivate parziali totalmente ellittiche" Rend. R. Acc. Lincei, Classe Sci. (V) , 16 (1907) pp. 932–938
[a2] E.E. Levi, "Sulle equazioni lineari totalmente ellittiche alle derivate parziali" Rend. Circ. Mat. Palermo , 24 (1907) pp. 275–317
[a3] O.D. Kellogg, "Foundations of potential theory" , F. Ungar (1929) (Re-issue: Springer, 1967)
How to Cite This Entry:
Potential of a mass distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Potential_of_a_mass_distribution&oldid=48264
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article