Namespaces
Variants
Actions

Difference between revisions of "Negative polynomial distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing subscripts)
Line 14: Line 14:
  
 
The joint [[Probability distribution|probability distribution]] (cf. also [[Joint distribution|Joint distribution]]) of random variables 
 
The joint [[Probability distribution|probability distribution]] (cf. also [[Joint distribution|Joint distribution]]) of random variables    X _ {1} \dots X _ {k}
that take non-negative integer values    m = 0, 1 \dots
+
that take non-negative integer values  $  m = 0, 1, \dots $
 
defined by the formula
 
defined by the formula
  
 
$$ \tag{* }
 
$$ \tag{* }
{\mathsf P} \{ X _ {1} = m _ {1} \dots X _ {k} = m _ {k} \} =
+
{\mathsf P} \{ X _ {1} = m _ {1}, \dots, X _ {k} = m _ {k} \} =
 
$$
 
$$
  
Line 24: Line 24:
 
= \  
 
= \  
  
\frac{\Gamma ( r+ m _ {1} + \dots + m _ {k} ) }{\Gamma ( r) m _ {1} ! \dots m _ {k} ! }
+
\frac{\Gamma ( r+ m _ {1} + \dots + m _ {k} ) }{\Gamma ( r) m _ {1} ! \cdots m _ {k} ! }
  p _ {0}  ^ {r} p _ {1} ^ {m _ {1} } \dots p _ {k} ^ {m _ {k} } ,
+
  p _ {0}  ^ {r} p _ {1} ^ {m _ {1} } \cdots p _ {k} ^ {m _ {k} } ,
 
$$
 
$$
  
Line 31: Line 31:
 
and    p _ {0} \dots p _ {k} (
 
and    p _ {0} \dots p _ {k} (
 
  0 < p _ {i} < 1 ,  
 
  0 < p _ {i} < 1 ,  
  i = 0 \dots k ;  
+
$  i = 0, \dots, k $;  
 
  p _ {0} + \dots + p _ {k} = 1 )  
 
  p _ {0} + \dots + p _ {k} = 1 )  
are parameters. A negative multinomial distribution is a multi-dimensional [[Discrete distribution|discrete distribution]] — a distribution of a random vector    ( X _ {1} \dots X _ {k} )
+
are parameters. A negative multinomial distribution is a multi-dimensional [[Discrete distribution|discrete distribution]] — a distribution of a random vector  $  ( X _ {1}, \dots, X _ {k} ) $
 
with non-negative integer components.
 
with non-negative integer components.
  
Line 41: Line 41:
 
$$  
 
$$  
 
P( z _ {1} \dots z _ {k} )  =  p _ {0}  ^ {r} \left ( 1 - \sum
 
P( z _ {1} \dots z _ {k} )  =  p _ {0}  ^ {r} \left ( 1 - \sum
_ { i= } 1 ^ { k }  z _ {i} p _ {i} \right )  ^ {-} r .
+
_ { i= 1} ^ { k }  z _ {i} p _ {i} \right )  ^ {-r} .
 
$$
 
$$
  
Line 47: Line 47:
 
different outcomes with labels    0 \dots k
 
different outcomes with labels    0 \dots k
 
are possible, having probabilities    p _ {0} \dots p _ {k} ,  
 
are possible, having probabilities    p _ {0} \dots p _ {k} ,  
respectively. The trials continue up to the    r -
+
respectively. The trials continue up to the    r -th appearance of the outcome with label 0 (here    r
th appearance of the outcome with label 0 (here    r
 
 
is an integer). If    X _ {i}
 
is an integer). If    X _ {i}
 
is the number of appearances of the outcome with label    i ,  
 
is the number of appearances of the outcome with label    i ,  
 
  i = 1 \dots k ,  
 
  i = 1 \dots k ,  
during the trials, then formula (*) expresses the probability of the appearance of outcomes with labels    1 \dots k ,  
+
during the trials, then formula (*) expresses the probability of the appearance of outcomes with labels  $  1, \dots, k $,  
 
equal, respectively,    m _ {1} \dots m _ {k}
 
equal, respectively,    m _ {1} \dots m _ {k}
times, up to the    r -
+
times, up to the    r -th appearance of the outcome 0. A negative multinomial distribution in this sense is a generalization of a [[Negative binomial distribution|negative binomial distribution]], coinciding with it when    k= 1 .
th appearance of the outcome 0. A negative multinomial distribution in this sense is a generalization of a [[Negative binomial distribution|negative binomial distribution]], coinciding with it when    k= 1 .
 
  
 
If a random vector    ( X _ {0} \dots X _ {k} )
 
If a random vector    ( X _ {0} \dots X _ {k} )

Revision as of 16:46, 1 February 2022


negative multinomial distribution

The joint probability distribution (cf. also Joint distribution) of random variables X _ {1} \dots X _ {k} that take non-negative integer values m = 0, 1, \dots defined by the formula

\tag{* } {\mathsf P} \{ X _ {1} = m _ {1}, \dots, X _ {k} = m _ {k} \} =

= \ \frac{\Gamma ( r+ m _ {1} + \dots + m _ {k} ) }{\Gamma ( r) m _ {1} ! \cdots m _ {k} ! } p _ {0} ^ {r} p _ {1} ^ {m _ {1} } \cdots p _ {k} ^ {m _ {k} } ,

where r > 0 and p _ {0} \dots p _ {k} ( 0 < p _ {i} < 1 , i = 0, \dots, k ; p _ {0} + \dots + p _ {k} = 1 ) are parameters. A negative multinomial distribution is a multi-dimensional discrete distribution — a distribution of a random vector ( X _ {1}, \dots, X _ {k} ) with non-negative integer components.

The generating function of the negative polynomial distribution with parameters r, p _ {0} \dots p _ {k} has the form

P( z _ {1} \dots z _ {k} ) = p _ {0} ^ {r} \left ( 1 - \sum _ { i= 1} ^ { k } z _ {i} p _ {i} \right ) ^ {-r} .

A negative multinomial distribution arises in the following multinomial scheme. Successive independent trials are carried out, and in each trial k+ 1 different outcomes with labels 0 \dots k are possible, having probabilities p _ {0} \dots p _ {k} , respectively. The trials continue up to the r -th appearance of the outcome with label 0 (here r is an integer). If X _ {i} is the number of appearances of the outcome with label i , i = 1 \dots k , during the trials, then formula (*) expresses the probability of the appearance of outcomes with labels 1, \dots, k , equal, respectively, m _ {1} \dots m _ {k} times, up to the r -th appearance of the outcome 0. A negative multinomial distribution in this sense is a generalization of a negative binomial distribution, coinciding with it when k= 1 .

If a random vector ( X _ {0} \dots X _ {k} ) has, conditionally on n , a multinomial distribution with parameters n > 1 , p _ {0} \dots p _ {k} and if the parameter n is itself a random variable having a negative binomial distribution with parameters r > 0 , 0 < \pi < 1 , then the marginal distribution of the vector ( X _ {1} \dots X _ {k} ) , given the condition X _ {0} = r , is the negative multinomial distribution with parameters r , p _ {0} ( 1- \pi ) \dots p _ {k} ( 1- \pi ) .

Comments

References

[a1] J. Neyman, "Proceedings of the international symposium on discrete distributions" , Montreal (1963)
How to Cite This Entry:
Negative polynomial distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Negative_polynomial_distribution&oldid=47953
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article