Namespaces
Variants
Actions

Difference between revisions of "Invariance of a statistical procedure"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fixing spaces)
 
Line 16: Line 16:
 
of the outcomes 
 
of the outcomes    \omega
 
of an observation belongs to a known family    \{ {P _  \theta  } : {\theta \in \Theta } \} .  
 
of an observation belongs to a known family    \{ {P _  \theta  } : {\theta \in \Theta } \} .  
A statistical decision problem is said to be    G -
+
A statistical decision problem is said to be    G -equivariant under a group    G
equivariant under a group    G
 
 
of measurable transformations    g
 
of measurable transformations    g
 
of a measurable space    ( \Omega , B _  \Omega  )
 
of a measurable space    ( \Omega , B _  \Omega  )
 
of outcomes if the following conditions hold: 1) there is a homomorphism    f
 
of outcomes if the following conditions hold: 1) there is a homomorphism    f
 
of    G
 
of    G
onto a group  $  \overline{G}\; $
+
onto a group    \overline{G}
 
of transformations of the parameter space    \Theta ,
 
of transformations of the parameter space    \Theta ,
  
 
$$  
 
$$  
f :  g  \rightarrow  \overline{g}\; \in  \overline{G}\; ,\  \forall g \in G ,
+
f :  g  \rightarrow  \overline{g}  \in  \overline{G} ,\  \forall g \in G ,
 
$$
 
$$
  
Line 32: Line 31:
  
 
$$  
 
$$  
( P _  \theta  g ) ( \cdot )  =  P _ {\overline{g}\; ( \theta ) }  ( \cdot ) ,\ \  
+
( P _  \theta  g ) ( \cdot )  =  P _ {\overline{g} ( \theta ) }  ( \cdot ) ,\ \  
 
\forall g \in G ;
 
\forall g \in G ;
 
$$
 
$$
Line 49: Line 48:
  
 
$$  
 
$$  
L ( \overline{g}\; ( \theta ) , \widehat{g}  ( d ) )  =  L ( \theta , d ) ,
+
L ( \overline{g} ( \theta ) , \widehat{g}  ( d ) )  =  L ( \theta , d ) ,
 
$$
 
$$
  
Line 55: Line 54:
 
is the loss function; and 3) all the additional a priori information on the possible values of the parameter (the a priori density    p ( \theta ) ,  
 
is the loss function; and 3) all the additional a priori information on the possible values of the parameter (the a priori density    p ( \theta ) ,  
 
the subdivision into alternatives    \Theta = \Theta _ {1} \cup \dots \cup \Theta _ {s} ,  
 
the subdivision into alternatives    \Theta = \Theta _ {1} \cup \dots \cup \Theta _ {s} ,  
etc.) is    G -
+
etc.) is    G -invariant or    G -equivariant. Under these conditions, the decision rule    \delta :  \omega \rightarrow \delta ( \omega ) \in D ,  
invariant or    G -
+
whether deterministic or random, is called an invariant (more precisely, a    G -equivariant) procedure if
equivariant. Under these conditions, the decision rule    \delta :  \omega \rightarrow \delta ( \omega ) \in D ,  
 
whether deterministic or random, is called an invariant (more precisely, a    G -
 
equivariant) procedure if
 
  
 
$$  
 
$$  
Line 74: Line 70:
  
 
of an equivariant decision procedure    \delta
 
of an equivariant decision procedure    \delta
is    G -
+
is    G -invariant; in particular, it does not depend on    \theta
invariant; in particular, it does not depend on    \theta
 
 
if the group    G
 
if the group    G
 
acts transitively on    \Theta .
 
acts transitively on    \Theta .
Line 84: Line 79:
 
is sufficiently rich, there is an optimal invariant procedure with a uniformly minimal risk among the invariant procedures.
 
is sufficiently rich, there is an optimal invariant procedure with a uniformly minimal risk among the invariant procedures.
  
Invariant procedures are widely applied in hypotheses testing (see also [[Invariant test|Invariant test]]) and in the estimation of the parameters of a probability distribution. Thus, in the problem of estimating an unknown vector of means for the family of    m -
+
Invariant procedures are widely applied in hypotheses testing (see also [[Invariant test|Invariant test]]) and in the estimation of the parameters of a probability distribution. Thus, in the problem of estimating an unknown vector of means for the family of    m -dimensional normal distributions
dimensional normal distributions
 
  
 
$$  
 
$$  
Line 109: Line 103:
 
of permutations of the observations and the group    \mathop{\rm Ort} ( m )
 
of permutations of the observations and the group    \mathop{\rm Ort} ( m )
 
of motions of the Euclidean space    \mathbf R  ^ {m} ;  
 
of motions of the Euclidean space    \mathbf R  ^ {m} ;  
$  \overline{G}\; = \widehat{G}  =  \mathop{\rm Ort} ( m) $.  
+
  \overline{G} = \widehat{G}  =  \mathop{\rm Ort} ( m) .  
 
For    m \geq  3 ,  
 
For    m \geq  3 ,  
 
there exist for this problem non-equivariant estimators leading to a smaller risk than for    \mathbf x  ^ {*}
 
there exist for this problem non-equivariant estimators leading to a smaller risk than for    \mathbf x  ^ {*}

Latest revision as of 07:44, 13 May 2022


The equivariance (see below) of some decision rule in a statistical problem, the statement of which admits of a group G of symmetries, under this group G . The notion of invariance of a statistical procedure arises in the first instance in so-called parametric problems of mathematical statistics, when there is a priori information: the probability distribution P ( d \omega ) of the outcomes \omega of an observation belongs to a known family \{ {P _ \theta } : {\theta \in \Theta } \} . A statistical decision problem is said to be G -equivariant under a group G of measurable transformations g of a measurable space ( \Omega , B _ \Omega ) of outcomes if the following conditions hold: 1) there is a homomorphism f of G onto a group \overline{G} of transformations of the parameter space \Theta ,

f : g \rightarrow \overline{g} \in \overline{G} ,\ \forall g \in G ,

with the property

( P _ \theta g ) ( \cdot ) = P _ {\overline{g} ( \theta ) } ( \cdot ) ,\ \ \forall g \in G ;

2) there exists a homomorphism h of G onto a group \widehat{G} of measurable transformations of a measurable space ( D , B _ {D} ) of decisions d ,

h : g \rightarrow \widehat{g} \in \widehat{G} ,\ \forall g \in G ,

with the property

L ( \overline{g} ( \theta ) , \widehat{g} ( d ) ) = L ( \theta , d ) ,

where L ( \theta , d ) is the loss function; and 3) all the additional a priori information on the possible values of the parameter (the a priori density p ( \theta ) , the subdivision into alternatives \Theta = \Theta _ {1} \cup \dots \cup \Theta _ {s} , etc.) is G -invariant or G -equivariant. Under these conditions, the decision rule \delta : \omega \rightarrow \delta ( \omega ) \in D , whether deterministic or random, is called an invariant (more precisely, a G -equivariant) procedure if

\delta ( g ( \omega ) ) = \widehat{g} ( \delta ( \omega ) ) ,\ \ \forall \omega \in \Omega ,\ \forall g \in G .

The risk

r _ \delta ( \theta ) = {\mathsf E} _ \theta L ( \theta , \delta ( \omega ) )

of an equivariant decision procedure \delta is G -invariant; in particular, it does not depend on \theta if the group G acts transitively on \Theta .

In parametric problems there is, in general, no guaranteed optimal decision procedure which minimizes the risk for each value of the parameter \theta \in \Theta . In particular, a procedure may lead to very small values of the risk for certain values of \theta at the expense of worsening the quality for other equally-possible a priori values of the parameter. Equivariance guarantees to some extent that the approach is unbiased. When the group G is sufficiently rich, there is an optimal invariant procedure with a uniformly minimal risk among the invariant procedures.

Invariant procedures are widely applied in hypotheses testing (see also Invariant test) and in the estimation of the parameters of a probability distribution. Thus, in the problem of estimating an unknown vector of means for the family of m -dimensional normal distributions

p ( \mathbf x , \pmb\alpha ) = \frac{1}{( 2 \pi ) ^ {m/2} } \mathop{\rm exp} \left [ \frac{- \sum _ {j} ( x _ {j} - \alpha _ {j} ) ^ {2} }{2} \right ]

with unit covariance matrix and quadratic loss function \sum _ {j} ( \delta _ {j} - \alpha _ {j} ) ^ {2} , the optimal equivariant estimator is the ordinary sample mean

\mathbf x ^ {*} = \frac{\mathbf x ^ {(} 1) + \dots + \mathbf x ^ {(} N) }{N} .

Here the group G is given by the product of the group S _ {N} of permutations of the observations and the group \mathop{\rm Ort} ( m ) of motions of the Euclidean space \mathbf R ^ {m} ; \overline{G} = \widehat{G} = \mathop{\rm Ort} ( m) . For m \geq 3 , there exist for this problem non-equivariant estimators leading to a smaller risk than for \mathbf x ^ {*} for all \pmb\alpha ; however, the region of essential "superefficiency" turns out to be insignificant and diminishes without bound as the size N of the sample increases. The possibility of superefficient procedures is connected with the non-compactness of G .

Equivariant statistical procedures also arise in a number of non-parametric statistical problems, when the a priori family of distributions P of outcomes is essentially infinite-dimensional, as well as in the construction of confidence sets for the parameter \theta of the distribution in the presence of nuisance parameters.

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)
How to Cite This Entry:
Invariance of a statistical procedure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invariance_of_a_statistical_procedure&oldid=47409
This article was adapted from an original article by N.N. Chentsov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article