Namespaces
Variants
Actions

Difference between revisions of "Incomplete gamma-function"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(corrected several typos)
 
Line 19: Line 19:
  
 
\int\limits _ { 0 } ^ { x }  
 
\int\limits _ { 0 } ^ { x }  
e  ^ {-} t t  ^ {m-} 1 dt ,\ \  
+
e  ^ {-t} t  ^ {m-1}  dt ,\ \  
 
x \geq  0 ,\  m > 0 ,
 
x \geq  0 ,\  m > 0 ,
 
$$
 
$$
  
where  $  \Gamma ( m) = \int _ {0}  ^  \infty  e  ^ {-} t t  ^ {m-} 1 dt $
+
where  $  \Gamma ( m) = \int _ {0}  ^  \infty  e  ^ {-t} t  ^ {m-1}  dt $
 
is the [[Gamma-function|gamma-function]]. If 
 
is the [[Gamma-function|gamma-function]]. If    n \geq  0
 
is an integer, then
 
is an integer, then
Line 29: Line 29:
 
$$  
 
$$  
 
I ( x , n+ 1 )  = \  
 
I ( x , n+ 1 )  = \  
1 - e  ^ {-} x
+
1 - e  ^ {-x}  
\sum _ { m= } 0 ^ { n }  
+
\sum _ { m= 0}^ { n }  
  
 
\frac{x  ^ {m} }{m ! }
 
\frac{x  ^ {m} }{m ! }
Line 41: Line 41:
 
I ( x , m )  = \  
 
I ( x , m )  = \  
  
\frac{e  ^ {-} x x  ^ {m} }{\Gamma ( m+ 1 ) }
+
\frac{e  ^ {-x} x  ^ {m} }{\Gamma ( m+ 1 ) }
  
 
\left \{
 
\left \{
 
1+
 
1+
\sum _ { k= } 1 ^ \infty   
+
\sum _ { k= 1}^\infty   
  
 
\frac{x  ^ {k} }{( m+ 1 ) \dots ( m+ k ) }
 
\frac{x  ^ {k} }{( m+ 1 ) \dots ( m+ k ) }
Line 61: Line 61:
 
= \  
 
= \  
 
1 -  
 
1 -  
\frac{x  ^ {m} - e  ^ {-} x }{\Gamma ( m
+
\frac{x  ^ {m-1} e  ^ {-x} }{\Gamma ( m
 
+ 1 ) }
 
+ 1 ) }
 
  \left \{  
 
  \left \{  
Line 83: Line 83:
 
I ( x , m )  =  1 -
 
I ( x , m )  =  1 -
  
\frac{x  ^ {m-} 1 e  ^ {-} x }{\Gamma ( m) }
+
\frac{x  ^ {m-1} e  ^ {-x} }{\Gamma ( m) }
  
 
\left \{
 
\left \{
\sum _ { i= } 0 ^ { M- } 1
+
\sum _ { i= 0}^{ M- 1}  
  
 
\frac{( - 1 )  ^ {i} \Gamma ( 1- m+ i ) }{x  ^ {i} \Gamma ( 1- m ) }
 
\frac{( - 1 )  ^ {i} \Gamma ( 1- m+ i ) }{x  ^ {i} \Gamma ( 1- m ) }
  
+ O ( x ^ {-} M )
+
+ O ( x^{-M} )
 
\right \} .
 
\right \} .
 
$$
 
$$
Line 98: Line 98:
 
$$  
 
$$  
 
I ( x , m )  = \  
 
I ( x , m )  = \  
\Phi ( 2 \sqrt x - \sqrt m- 1 ) + O ( m  ^ {-} 1/2 ) ,
+
\Phi ( 2 \sqrt x - \sqrt m- 1 ) + O ( m  ^ {-1/2) ,
 
$$
 
$$
  
Line 107: Line 107:
 
  \right )  ^ {1/3} - 1 +  
 
  \right )  ^ {1/3} - 1 +  
 
\frac{1}{9m}
 
\frac{1}{9m}
  \right ) \right ] + O ( m  ^ {-} 1 ) ,
+
  \right ) \right ] + O ( m  ^ {-1} ) ,
 
$$
 
$$
  
Line 135: Line 135:
 
$$  
 
$$  
  
\frac{\partial  ^ {n+} 1 }{\partial  x  ^ {n+} 1 }
+
\frac{\partial  ^ {n+1} }{\partial  x  ^ {n+1} }
  
 
I ( x , n + \alpha )  = \  
 
I ( x , n + \alpha )  = \  
Line 142: Line 142:
 
\frac{\Gamma ( \alpha ) }{\Gamma ( n+ \alpha ) }
 
\frac{\Gamma ( \alpha ) }{\Gamma ( n+ \alpha ) }
  
x ^ {\alpha - 1 } e  ^ {-} x L _ {n} ^ {( \alpha ) } ( x ) .
+
x ^ {\alpha - 1 } e  ^ {-x} L _ {n} ^ {( \alpha ) } ( x ) .
 
$$
 
$$
  
Line 163: Line 163:
 
\frac{1}{\Gamma ( a) }
 
\frac{1}{\Gamma ( a) }
  
\int\limits _ { 0 } ^ { x }  t ^ {a - 1 } e  ^ {-} d t ,
+
\int\limits _ { 0 } ^ { x }  t ^ {a - 1 } e  ^ {-t}   d t ,
 
$$
 
$$
  
Line 169: Line 169:
 
Q ( a , x )  =   
 
Q ( a , x )  =   
 
\frac{1}{\Gamma ( a) }
 
\frac{1}{\Gamma ( a) }
  \int\limits _ { x } ^  \infty  t ^ {a - 1 } e  ^ {-} t d t ,
+
  \int\limits _ { x } ^  \infty  t ^ {a - 1 } e  ^ {-t}  d t ,
 
$$
 
$$
  
Line 181: Line 181:
 
\frac{1}{\Gamma ( a) }
 
\frac{1}{\Gamma ( a) }
  
x  ^ {a} e  ^ {-} x \Psi ( 1 ;  a + 1 ;  x ) .
+
x  ^ {a} e  ^ {-x} \Psi ( 1 ;  a + 1 ;  x ) .
 
$$
 
$$
  

Latest revision as of 00:47, 31 December 2021


The function defined by the formula

I ( x , m ) = \ \frac{1}{\Gamma ( m) } \int\limits _ { 0 } ^ { x } e ^ {-t} t ^ {m-1} dt ,\ \ x \geq 0 ,\ m > 0 ,

where \Gamma ( m) = \int _ {0} ^ \infty e ^ {-t} t ^ {m-1} dt is the gamma-function. If n \geq 0 is an integer, then

I ( x , n+ 1 ) = \ 1 - e ^ {-x} \sum _ { m= 0}^ { n } \frac{x ^ {m} }{m ! } .

Series representation:

I ( x , m ) = \ \frac{e ^ {-x} x ^ {m} }{\Gamma ( m+ 1 ) } \left \{ 1+ \sum _ { k= 1}^\infty \frac{x ^ {k} }{( m+ 1 ) \dots ( m+ k ) } \right \} .

Continued fraction representation:

I ( x , m ) =

= \ 1 - \frac{x ^ {m-1} e ^ {-x} }{\Gamma ( m + 1 ) } \left \{ \frac{1 \mid }{\mid x } + \frac{1 - m \mid }{\mid 1 } + \frac{1 \mid }{\mid x } + \frac{2 - m \mid }{\mid 1 } + \frac{2 \mid }{\mid x } + \dots \right \} .

Asymptotic representation for large x :

I ( x , m ) = 1 - \frac{x ^ {m-1} e ^ {-x} }{\Gamma ( m) } \left \{ \sum _ { i= 0}^{ M- 1} \frac{( - 1 ) ^ {i} \Gamma ( 1- m+ i ) }{x ^ {i} \Gamma ( 1- m ) } + O ( x^{-M} ) \right \} .

Asymptotic representation for large m :

I ( x , m ) = \ \Phi ( 2 \sqrt x - \sqrt m- 1 ) + O ( m ^ {-1/2} ) ,

I ( x , m ) = \Phi \left [ 3 \sqrt m \left ( \left ( \frac{x}{m} \right ) ^ {1/3} - 1 + \frac{1}{9m} \right ) \right ] + O ( m ^ {-1} ) ,

where

\Phi ( z) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { z } e ^ {- t ^ {2} / 2 } dt .

Connection with the confluent hypergeometric function:

I ( x , m ) = \ \frac{x ^ {m} }{\Gamma ( m+ 1 ) } {} _ {1} F _ {1} ( m , m+ 1 ; - x ) .

Connection with the Laguerre polynomials L _ {n} ^ {( \alpha ) } ( x) :

\frac{\partial ^ {n+1} }{\partial x ^ {n+1} } I ( x , n + \alpha ) = \ ( - 1 ) ^ {n} n! \frac{\Gamma ( \alpha ) }{\Gamma ( n+ \alpha ) } x ^ {\alpha - 1 } e ^ {-x} L _ {n} ^ {( \alpha ) } ( x ) .

Recurrence relation:

m I ( x , m+ 1 ) + x I ( x , m- 1 ) = \ ( x+ m ) I ( x , m ) .

References

[1] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1973)
[2] V.I. Pagurova, "Tables of the incomplete gamma-function" , Moscow (1963) (In Russian)

Comments

The following notations are also used:

P ( a , x ) = \frac{1}{\Gamma ( a) } \int\limits _ { 0 } ^ { x } t ^ {a - 1 } e ^ {-t} d t ,

Q ( a , x ) = \frac{1}{\Gamma ( a) } \int\limits _ { x } ^ \infty t ^ {a - 1 } e ^ {-t} d t ,

with \mathop{\rm Re} a > 0 , x \geq 0 . The Q - function is related to the confluent hypergeometric function:

Q ( a , x ) = \frac{1}{\Gamma ( a) } x ^ {a} e ^ {-x} \Psi ( 1 ; a + 1 ; x ) .

New asymptotic expansions for both P ( a , x ) and Q ( a , x ) are given in [a1].

References

[a1] N.M. Temme, "The asymptotic expansion of the incomplete gamma functions" SIAM J. Math. Anal. , 10 (1979) pp. 757–766
How to Cite This Entry:
Incomplete gamma-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Incomplete_gamma-function&oldid=47326
This article was adapted from an original article by V.I. Pagurova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article