Namespaces
Variants
Actions

Difference between revisions of "Mahler measure"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
m (AUTOMATIC EDIT (latexlist): Replaced 72 formulas out of 72 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
Given a [[Polynomial|polynomial]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200701.png" /> with complex coefficients, the logarithmic Mahler measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200702.png" /> is defined to be the average over the unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200703.png" />-torus of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200704.png" />, i.e.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200705.png" /></td> </tr></table>
+
Out of 72 formulas, 72 were replaced by TEX code.-->
  
The Mahler measure is defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200706.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200707.png" /> is the [[Geometric mean|geometric mean]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200708.png" /> over the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m1200709.png" />-torus. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007011.png" />, Jensen's formula gives the explicit formula
+
{{TEX|semi-auto}}{{TEX|done}}
 +
Given a [[Polynomial|polynomial]] $P ( x _ { 1 } , \ldots , x _ { n } )$ with complex coefficients, the logarithmic Mahler measure $m ( P )$ is defined to be the average over the unit $n$-torus of $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { n } ) |$, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007012.png" /></td> </tr></table>
+
\begin{equation*} m ( P ) = \int _ { 0 } ^ { 1 } \ldots \int _ { 0 } ^ { 1 } \operatorname { log } | P ( e ^ { i t_{1} }  , \ldots , e ^ { i t _ { n } } ) | d t _ { 1 } \ldots d t _ { n }. \end{equation*}
  
so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007013.png" />.
+
The Mahler measure is defined by $M ( P ) = \operatorname { exp } ( m ( P ) )$, so that $M ( P )$ is the [[Geometric mean|geometric mean]] of $| P |$ over the $n$-torus. If $n = 1$ and $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$, Jensen's formula gives the explicit formula
  
The Mahler measure is useful in the study of polynomial inequalities because of the multiplicative property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007014.png" />. The important basic inequality
+
\begin{equation*} m ( P ) = \operatorname { log } | a _ { 0 } | + \sum _ { k = 1 } ^ { d  } \operatorname { log } ( \operatorname { max } ( | \alpha _ { k } | , 1 ) ), \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007015.png" /></td> </tr></table>
+
so that $M ( P ) = | a _ { 0 } | \prod _ { k = 1 } ^ { d } \operatorname { max } ( | \alpha _ { k } | , 1 )$.
  
[[#References|[a9]]] relates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007016.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007017.png" />, the sum of the absolute values of the coefficients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007019.png" /> denotes the total degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007020.png" />, i.e. the sum of the degrees in each variable separately. A recent inequality for polynomials of one variable is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007023.png" /> is the sum of the degrees of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007025.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007026.png" /> is the best possible constant [[#References|[a2]]].
+
The Mahler measure is useful in the study of polynomial inequalities because of the multiplicative property $M ( P Q ) = M ( P ) M ( Q )$. The important basic inequality
  
Specializing to polynomials with integer coefficients, in case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007028.png" /> is the logarithm of an [[algebraic integer]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007029.png" />, there are few explicit formulas known, but those that do exist suggest that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007030.png" /> has intimate connections with [[K-theory|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007031.png" />-theory]]. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007033.png" /> is the [[Dirichlet L-function|Dirichlet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007034.png" />-function]] for the odd primitive character of conductor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007035.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007036.png" />, and it has been conjectured that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007037.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007038.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007039.png" />-function of an [[Elliptic curve|elliptic curve]] of conductor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007040.png" />. This formula has not been proved but has been verified to over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007041.png" /> decimal places [[#References|[a3]]], [[#References|[a4]]].
+
\begin{equation*} M ( P ) \leq L ( P ) \leq 2 ^ { d } M ( P ) \end{equation*}
  
The Mahler measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007042.png" /> occurs naturally as the growth rate in many problems, for example as the entropy of certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007044.png" />-actions [[#References|[a10]]]. The set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007045.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007046.png" /> is known: in case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007047.png" />, a theorem of Kronecker shows that these are products of cyclotomic polynomials and monomials. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007048.png" />, these are the generalized cyclotomic polynomials [[#References|[a1]]]. An important open question, known as [[Lehmer conjecture|Lehmer's problem]], is whether there is a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007049.png" /> such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007050.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007051.png" />. This is known to be the case if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007052.png" /> is a non-reciprocal polynomial, where a polynomial is reciprocal if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007053.png" /> is a monomial. In this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007054.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007055.png" /> is the smallest [[Pisot number|Pisot number]], the real root of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007056.png" /> [[#References|[a6]]], [[#References|[a1]]]. A possible value for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007057.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007058.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007059.png" /> is the smallest known [[Salem number|Salem number]], a number of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007060.png" /> known as Lehmer's number.
+
[[#References|[a9]]] relates $M ( P )$ to $L ( P )$, the sum of the absolute values of the coefficients of $P$, where $d$ denotes the total degree of $P$, i.e. the sum of the degrees in each variable separately. A recent inequality for polynomials of one variable is that $\| P \| _{\infty} \| Q \| _{\infty} \leq \delta^{d} \| PQ \| _{\infty} $, where $\| P \| _ { \infty } = \operatorname { max } _ { | z | = 1 } | P ( z ) |$, $d$ is the sum of the degrees of $P$ and $Q$, and $\delta = M ( 1 + x + y - x y ) = 1.7916228\dots$ is the best possible constant [[#References|[a2]]].
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007061.png" />, the best result in this direction is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007062.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007063.png" /> is an explicit absolute constant and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007064.png" /> is the degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007065.png" /> [[#References|[a5]]]. A result that applies to polynomials in any number of variables is an explicit constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007066.png" /> depending on the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007067.png" /> of non-zero coefficients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007068.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007069.png" /> [[#References|[a7]]], [[#References|[a1]]].
+
Specializing to polynomials with integer coefficients, in case $n = 1$, $m ( P )$ is the logarithm of an [[algebraic integer]]. If $n &gt; 1$, there are few explicit formulas known, but those that do exist suggest that $m ( P )$ has intimate connections with [[K-theory|$K$-theory]]. For example, $m ( 1 + x + y ) = L ^ { \prime } ( - 1 , \chi _{- 3} )$, where $L ( s , \chi_{- 3} )$ is the [[Dirichlet L-function|Dirichlet $L$-function]] for the odd primitive character of conductor $3$, i.e. $\chi_{ - 3} ( n ) = \left( \frac { - 3 } { n } \right)$, and it has been conjectured that $m ( x + y + x y + x ^ { 2 } y + x y ^ { 2 } ) = L ^ { \prime } ( 0 , E _ { 15 } )$, where $L ( s , E _ { 15 } )$ is the $L$-function of an [[Elliptic curve|elliptic curve]] of conductor $15$. This formula has not been proved but has been verified to over $50$ decimal places [[#References|[a3]]], [[#References|[a4]]].
  
A recent development is the elliptic Mahler measure [[#References|[a8]]], in which the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007070.png" /> is replaced by an elliptic curve. It seems likely that this will have an interpretation as the entropy of a dynamical system but this remains as of yet (1998) a future development.
+
The Mahler measure $m ( P )$ occurs naturally as the growth rate in many problems, for example as the entropy of certain ${\bf Z} ^ { d }$-actions [[#References|[a10]]]. The set of $P$ for which $m ( P ) = 0$ is known: in case $n = 1$, a theorem of Kronecker shows that these are products of cyclotomic polynomials and monomials. In case $n &gt; 1$, these are the generalized cyclotomic polynomials [[#References|[a1]]]. An important open question, known as [[Lehmer conjecture|Lehmer's problem]], is whether there is a constant $c_0 &gt; 0$ such that if $m ( P ) &gt; 0$, then $m ( P ) \geq c_0$. This is known to be the case if $P$ is a non-reciprocal polynomial, where a polynomial is reciprocal if $P ( x _ { 1 } ^ { - 1 } , \ldots , x _ { n } ^ { - 1 } ) / P ( x _ { 1 } , \ldots , x _ { n } )$ is a monomial. In this case, $m ( P ) \geq \operatorname { log } \theta _ { 0 }$, where $\theta _ { 0 } = 1.3247 \ldots &gt; 1$ is the smallest [[Pisot number|Pisot number]], the real root of $x ^ { 3 } - x - 1$ [[#References|[a6]]], [[#References|[a1]]]. A possible value for $c_0$ is $\operatorname { log } \sigma _ { 1 }$, where $\sigma _ { 1 } = 1.17628 \ldots$ is the smallest known [[Salem number|Salem number]], a number of degree $10$ known as Lehmer's number.
 +
 
 +
For $n = 1$, the best result in this direction is that $m ( P ) &gt; c _ { 1 } ( \operatorname { log } \operatorname { log } d / \operatorname { log } d ) ^ { 3 }$, where $c_1$ is an explicit absolute constant and $d$ is the degree of $P$ [[#References|[a5]]]. A result that applies to polynomials in any number of variables is an explicit constant $c _ { 2 } ( s ) &gt; 0$ depending on the number $s$ of non-zero coefficients of $P$ such that $m ( P ) \geq c _ { 2 } ( s )$ [[#References|[a7]]], [[#References|[a1]]].
 +
 
 +
A recent development is the elliptic Mahler measure [[#References|[a8]]], in which the torus $\bf T$ is replaced by an elliptic curve. It seems likely that this will have an interpretation as the entropy of a dynamical system but this remains as of yet (1998) a future development.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.W. Boyd, "Kronecker's theorem and Lehmer's problem for polynomials in several variables" ''J. Number Th.'' , '''13''' (1981) pp. 116–121</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D.W. Boyd, "Two sharp inequalities for the norm of a factor of a polynomial" ''Mathematika'' , '''39''' (1992) pp. 341–349 {{MR|1203290}} {{ZBL|0758.30003}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D.W. Boyd, "Mahler's measure and special values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007071.png" />-functions" ''Experim. Math.'' , '''37''' (1998) pp. 37–82</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> C. Deninger, "Deligne periods of mixed motives, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007072.png" />-theory and the entropy of certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007073.png" />-actions" ''J. Amer. Math. Soc.'' , '''10''' (1997) pp. 259–281 {{MR|1415320}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> E. Dobrowolski, "On a question of Lehmer and the number of irreducible factors of a polynomial" ''Acta Arith.'' , '''34''' (1979) pp. 391–401 {{MR|0543210}} {{ZBL|0416.12001}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> C.J. Smyth, "On the product of the conjugates outside the unit circle of an algebraic integer" ''Bull. London Math. Soc.'' , '''3''' (1971) pp. 169–175 {{MR|0289451}} {{ZBL|0235.12003}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> E. Dobrowolski, "Mahler's measure of a polynomial in function of the number of its coefficients" ''Canad. Math. Bull.'' , '''34''' (1991) pp. 186–195 {{MR|1113295}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> G. Everest, Ni Fhlathúin Brid, "The elliptic Mahler measure" ''Math. Proc. Cambridge Philos. Soc.'' , '''120''' : 1 (1996) pp. 13–25 {{MR|1373343}} {{ZBL|0865.11068}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> K. Mahler, "On some inequalities for polynomials in several variables" ''J. London Math. Soc.'' , '''37''' : 2 (1962) pp. 341–344 {{MR|0138593}} {{ZBL|0105.06301}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> K. Schmidt, "Dynamical systems of algebraic origin" , Birkhäuser (1995) {{MR|1345152}} {{ZBL|0833.28001}} </TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top"> D.W. Boyd, "Kronecker's theorem and Lehmer's problem for polynomials in several variables" ''J. Number Th.'' , '''13''' (1981) pp. 116–121</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> D.W. Boyd, "Two sharp inequalities for the norm of a factor of a polynomial" ''Mathematika'' , '''39''' (1992) pp. 341–349 {{MR|1203290}} {{ZBL|0758.30003}} </td></tr><tr><td valign="top">[a3]</td> <td valign="top"> D.W. Boyd, "Mahler's measure and special values of $L$-functions" ''Experim. Math.'' , '''37''' (1998) pp. 37–82</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> C. Deninger, "Deligne periods of mixed motives, $K$-theory and the entropy of certain $\mathbf{Z} ^ { n }$-actions" ''J. Amer. Math. Soc.'' , '''10''' (1997) pp. 259–281 {{MR|1415320}} {{ZBL|}} </td></tr><tr><td valign="top">[a5]</td> <td valign="top"> E. Dobrowolski, "On a question of Lehmer and the number of irreducible factors of a polynomial" ''Acta Arith.'' , '''34''' (1979) pp. 391–401 {{MR|0543210}} {{ZBL|0416.12001}} </td></tr><tr><td valign="top">[a6]</td> <td valign="top"> C.J. Smyth, "On the product of the conjugates outside the unit circle of an algebraic integer" ''Bull. London Math. Soc.'' , '''3''' (1971) pp. 169–175 {{MR|0289451}} {{ZBL|0235.12003}} </td></tr><tr><td valign="top">[a7]</td> <td valign="top"> E. Dobrowolski, "Mahler's measure of a polynomial in function of the number of its coefficients" ''Canad. Math. Bull.'' , '''34''' (1991) pp. 186–195 {{MR|1113295}} {{ZBL|}} </td></tr><tr><td valign="top">[a8]</td> <td valign="top"> G. Everest, Ni Fhlathúin Brid, "The elliptic Mahler measure" ''Math. Proc. Cambridge Philos. Soc.'' , '''120''' : 1 (1996) pp. 13–25 {{MR|1373343}} {{ZBL|0865.11068}} </td></tr><tr><td valign="top">[a9]</td> <td valign="top"> K. Mahler, "On some inequalities for polynomials in several variables" ''J. London Math. Soc.'' , '''37''' : 2 (1962) pp. 341–344 {{MR|0138593}} {{ZBL|0105.06301}} </td></tr><tr><td valign="top">[a10]</td> <td valign="top"> K. Schmidt, "Dynamical systems of algebraic origin" , Birkhäuser (1995) {{MR|1345152}} {{ZBL|0833.28001}} </td></tr></table>

Revision as of 16:58, 1 July 2020

Given a polynomial $P ( x _ { 1 } , \ldots , x _ { n } )$ with complex coefficients, the logarithmic Mahler measure $m ( P )$ is defined to be the average over the unit $n$-torus of $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { n } ) |$, i.e.

\begin{equation*} m ( P ) = \int _ { 0 } ^ { 1 } \ldots \int _ { 0 } ^ { 1 } \operatorname { log } | P ( e ^ { i t_{1} } , \ldots , e ^ { i t _ { n } } ) | d t _ { 1 } \ldots d t _ { n }. \end{equation*}

The Mahler measure is defined by $M ( P ) = \operatorname { exp } ( m ( P ) )$, so that $M ( P )$ is the geometric mean of $| P |$ over the $n$-torus. If $n = 1$ and $P ( x ) = a _ { 0 } \prod _ { k = 1 } ^ { d } ( x - \alpha _ { k } )$, Jensen's formula gives the explicit formula

\begin{equation*} m ( P ) = \operatorname { log } | a _ { 0 } | + \sum _ { k = 1 } ^ { d } \operatorname { log } ( \operatorname { max } ( | \alpha _ { k } | , 1 ) ), \end{equation*}

so that $M ( P ) = | a _ { 0 } | \prod _ { k = 1 } ^ { d } \operatorname { max } ( | \alpha _ { k } | , 1 )$.

The Mahler measure is useful in the study of polynomial inequalities because of the multiplicative property $M ( P Q ) = M ( P ) M ( Q )$. The important basic inequality

\begin{equation*} M ( P ) \leq L ( P ) \leq 2 ^ { d } M ( P ) \end{equation*}

[a9] relates $M ( P )$ to $L ( P )$, the sum of the absolute values of the coefficients of $P$, where $d$ denotes the total degree of $P$, i.e. the sum of the degrees in each variable separately. A recent inequality for polynomials of one variable is that $\| P \| _{\infty} \| Q \| _{\infty} \leq \delta^{d} \| PQ \| _{\infty} $, where $\| P \| _ { \infty } = \operatorname { max } _ { | z | = 1 } | P ( z ) |$, $d$ is the sum of the degrees of $P$ and $Q$, and $\delta = M ( 1 + x + y - x y ) = 1.7916228\dots$ is the best possible constant [a2].

Specializing to polynomials with integer coefficients, in case $n = 1$, $m ( P )$ is the logarithm of an algebraic integer. If $n > 1$, there are few explicit formulas known, but those that do exist suggest that $m ( P )$ has intimate connections with $K$-theory. For example, $m ( 1 + x + y ) = L ^ { \prime } ( - 1 , \chi _{- 3} )$, where $L ( s , \chi_{- 3} )$ is the Dirichlet $L$-function for the odd primitive character of conductor $3$, i.e. $\chi_{ - 3} ( n ) = \left( \frac { - 3 } { n } \right)$, and it has been conjectured that $m ( x + y + x y + x ^ { 2 } y + x y ^ { 2 } ) = L ^ { \prime } ( 0 , E _ { 15 } )$, where $L ( s , E _ { 15 } )$ is the $L$-function of an elliptic curve of conductor $15$. This formula has not been proved but has been verified to over $50$ decimal places [a3], [a4].

The Mahler measure $m ( P )$ occurs naturally as the growth rate in many problems, for example as the entropy of certain ${\bf Z} ^ { d }$-actions [a10]. The set of $P$ for which $m ( P ) = 0$ is known: in case $n = 1$, a theorem of Kronecker shows that these are products of cyclotomic polynomials and monomials. In case $n > 1$, these are the generalized cyclotomic polynomials [a1]. An important open question, known as Lehmer's problem, is whether there is a constant $c_0 > 0$ such that if $m ( P ) > 0$, then $m ( P ) \geq c_0$. This is known to be the case if $P$ is a non-reciprocal polynomial, where a polynomial is reciprocal if $P ( x _ { 1 } ^ { - 1 } , \ldots , x _ { n } ^ { - 1 } ) / P ( x _ { 1 } , \ldots , x _ { n } )$ is a monomial. In this case, $m ( P ) \geq \operatorname { log } \theta _ { 0 }$, where $\theta _ { 0 } = 1.3247 \ldots > 1$ is the smallest Pisot number, the real root of $x ^ { 3 } - x - 1$ [a6], [a1]. A possible value for $c_0$ is $\operatorname { log } \sigma _ { 1 }$, where $\sigma _ { 1 } = 1.17628 \ldots$ is the smallest known Salem number, a number of degree $10$ known as Lehmer's number.

For $n = 1$, the best result in this direction is that $m ( P ) > c _ { 1 } ( \operatorname { log } \operatorname { log } d / \operatorname { log } d ) ^ { 3 }$, where $c_1$ is an explicit absolute constant and $d$ is the degree of $P$ [a5]. A result that applies to polynomials in any number of variables is an explicit constant $c _ { 2 } ( s ) > 0$ depending on the number $s$ of non-zero coefficients of $P$ such that $m ( P ) \geq c _ { 2 } ( s )$ [a7], [a1].

A recent development is the elliptic Mahler measure [a8], in which the torus $\bf T$ is replaced by an elliptic curve. It seems likely that this will have an interpretation as the entropy of a dynamical system but this remains as of yet (1998) a future development.

References

[a1] D.W. Boyd, "Kronecker's theorem and Lehmer's problem for polynomials in several variables" J. Number Th. , 13 (1981) pp. 116–121
[a2] D.W. Boyd, "Two sharp inequalities for the norm of a factor of a polynomial" Mathematika , 39 (1992) pp. 341–349 MR1203290 Zbl 0758.30003
[a3] D.W. Boyd, "Mahler's measure and special values of $L$-functions" Experim. Math. , 37 (1998) pp. 37–82
[a4] C. Deninger, "Deligne periods of mixed motives, $K$-theory and the entropy of certain $\mathbf{Z} ^ { n }$-actions" J. Amer. Math. Soc. , 10 (1997) pp. 259–281 MR1415320
[a5] E. Dobrowolski, "On a question of Lehmer and the number of irreducible factors of a polynomial" Acta Arith. , 34 (1979) pp. 391–401 MR0543210 Zbl 0416.12001
[a6] C.J. Smyth, "On the product of the conjugates outside the unit circle of an algebraic integer" Bull. London Math. Soc. , 3 (1971) pp. 169–175 MR0289451 Zbl 0235.12003
[a7] E. Dobrowolski, "Mahler's measure of a polynomial in function of the number of its coefficients" Canad. Math. Bull. , 34 (1991) pp. 186–195 MR1113295
[a8] G. Everest, Ni Fhlathúin Brid, "The elliptic Mahler measure" Math. Proc. Cambridge Philos. Soc. , 120 : 1 (1996) pp. 13–25 MR1373343 Zbl 0865.11068
[a9] K. Mahler, "On some inequalities for polynomials in several variables" J. London Math. Soc. , 37 : 2 (1962) pp. 341–344 MR0138593 Zbl 0105.06301
[a10] K. Schmidt, "Dynamical systems of algebraic origin" , Birkhäuser (1995) MR1345152 Zbl 0833.28001
How to Cite This Entry:
Mahler measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mahler_measure&oldid=43024
This article was adapted from an original article by David Boyd (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article