Difference between revisions of "Euclidean space"
From Encyclopedia of Mathematics
(TeX done and links) |
|||
Line 13: | Line 13: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''I''' , Springer (1987). {{DOI|10.1007/978-3-540-93815-6}}</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''I''' , Springer (1987). {{ZBL|0606.51001}} {{DOI|10.1007/978-3-540-93815-6}}</TD></TR></table> |
Latest revision as of 14:38, 1 November 2023
A space the properties of which are described by the axioms of Euclidean geometry. In a more general sense, a Euclidean space is a finite-dimensional real vector space $\mathbb{R}^n$ with an inner product $(x,y)$, $x,y\in\mathbb{R}^n$, which in a suitably chosen (Cartesian) coordinate system $x=(x_1,\ldots,x_n)$ and $y=(y_1,\dots,y_n)$ is given by the formula \begin{equation} (x,y)=\sum_{i=1}^{n}x_i y_i. \end{equation}
Comments
Sometimes the phrase "Euclidean space" stands for the case $n=3$, as opposed to the case $n=2$ "Euclidean plane", see [1], Chapts. 8, 9.
References
[1] | M. Berger, "Geometry" , I , Springer (1987). Zbl 0606.51001 DOI 10.1007/978-3-540-93815-6 |
How to Cite This Entry:
Euclidean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euclidean_space&oldid=38673
Euclidean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euclidean_space&oldid=38673
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article