Difference between revisions of "Lambda-ring"
m (link) |
(TeX partially done) |
||
Line 1: | Line 1: | ||
− | A pre- | + | A pre-$\lambda$-ring is a commutative ring $R$ with identity element $1$ and a set of mappings $\lambda^n : R \rightarrow R$, $n = 0,1,2,\ldots$ such that |
− | i) | + | i) $\lambda^0(x) = 1$ for all $x \in R$; |
− | ii) | + | ii) $\lambda^1(x) = x$ for all $x \in R$; |
− | iii) | + | iii) $\lambda^n(x+y) = \sum_{i+j=n} \lambda^i(x) \lambda^j(y)$. |
− | Examples are, for instance, the topological | + | Examples are, for instance, the topological $K$-groups $K(M)$ and $K_G(M)$, $G$ a compact Lie group (cf. [[K-theory|$K$-theory]]), and the complex representation ring $R(G)$ of a finite group $G$ (cf. [[Representation of a compact group]]). In all these cases the $\lambda^n$ are induced by taking exterior powers. For instance, for $M = \text{pt}$, $K(M) = \mathbf{Z}$ and the $\lambda$-structure is given by $\lambda^n(m) = \binom{m}{n}$ (binomial coefficients; the formula $\binom{m_1+m_2}{n} = \sum_{i+j=n} \binom{m_1}{i} \binom{m_2}{j}$ follows by the binomial expansion theorem from $(X+Y)^{m_1+m_2} = (X+Y)^{m_1} (X+Y)^{m_2}$. |
− | Let | + | Let $R$ be any commutative ring with unit element 1. Consider the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701027.png" /> of power series in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701028.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701029.png" /> with constant term 1. Multiplication of power series turns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701030.png" /> into an Abelian group. A pre-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701031.png" />-ring structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701032.png" /> defines a homomorphism of Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701034.png" />, and vice versa. |
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701036.png" /> be two elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701037.png" />. Formally, write | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701036.png" /> be two elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057010/l05701037.png" />. Formally, write | ||
Line 104: | Line 104: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M.F. Atiyah, D.O. Tall, "Group representations, | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> M.F. Atiyah, D.O. Tall, "Group representations, $\lambda$-rings and the $J$-homomorphism" ''Topology'' , '''8''' (1969) pp. 253–297 {{MR|244387}} {{ZBL|}} </TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Grothendieck, "La théorie des classes de Chern" ''Bull. Soc. Math. France'' , '''86''' (1958) pp. 137–154 {{MR|0116023}} {{ZBL|0091.33201}} </TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Grothendieck, "Classes de faisceaux et théorème de Riemann–Roch" , ''Sem. Géom. Algébrique'' , '''6''' , Springer (1972) pp. 20–77 {{MR|}} {{ZBL|0229.14008}} </TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) pp. 144ff {{MR|0506881}} {{MR|0463184}} {{ZBL|0454.14020}} </TD></TR> | ||
+ | <TR><TD valign="top">[a5]</TD> <TD valign="top"> D. Knutson, "$\lambda$-rings and the representation theory of the symmetric group" , Springer (1974) {{MR|0364425}} {{ZBL|0272.20008}} </TD></TR> | ||
+ | <TR><TD valign="top">[a6]</TD> <TD valign="top"> P. Berthelot, "Généralités sur les $\lambda$-anneaux" , ''Sem. Géom. Algébrique'' , '''6''' , Springer (1972) pp. 297–365</TD></TR> | ||
+ | <TR><TD valign="top">[a7]</TD> <TD valign="top"> W. Fulton, S. Lang, "Riemann–Roch algebra" , Springer (1985) {{MR|0801033}} {{ZBL|0579.14011}} </TD></TR> | ||
+ | <TR><TD valign="top">[a8]</TD> <TD valign="top"> T. tom Dieck, "Transformation groups and representation theory" , Springer (1979) {{MR|}} {{ZBL|0445.57023}} </TD></TR> | ||
+ | <TR><TD valign="top">[a9]</TD> <TD valign="top"> C. Siebeneicher, "$\lambda$-Ringstrukturen auf dem Burnsidering der Permutationsdarstellungen einer endlichen Gruppe" ''Math. Z.'' , '''146''' (1976) pp. 223–238 {{MR|0390035}} {{ZBL|0306.20011}} </TD></TR> | ||
+ | <TR><TD valign="top">[a10]</TD> <TD valign="top"> J.F. Adams, "Vectorfields on spheres" ''Ann. of Math.'' , '''75''' (1962) pp. 603–632</TD></TR> | ||
+ | <TR><TD valign="top">[a11]</TD> <TD valign="top"> M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" ''Trans. Amer. Math. Soc.'' , '''259''' (1980) pp. 47–63 {{MR|0561822}} {{ZBL|0437.13014}} </TD></TR> | ||
+ | <TR><TD valign="top">[a12]</TD> <TD valign="top"> E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der $\ell^n$-ten Potenzreste im Körper der $\ell^n$-ten Einheitswurzeln" ''Abh. Math. Sem. Univ. Hamburg'' , '''6''' (1928) pp. 146–162</TD></TR> | ||
+ | <TR><TD valign="top">[a13]</TD> <TD valign="top"> G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" ''Duke Math. J.'' , '''21''' (1954) pp. 575–581 {{MR|73645}} {{ZBL|}} </TD></TR> | ||
+ | </table> |
Revision as of 17:38, 18 March 2016
A pre-$\lambda$-ring is a commutative ring $R$ with identity element $1$ and a set of mappings $\lambda^n : R \rightarrow R$, $n = 0,1,2,\ldots$ such that
i) $\lambda^0(x) = 1$ for all $x \in R$;
ii) $\lambda^1(x) = x$ for all $x \in R$;
iii) $\lambda^n(x+y) = \sum_{i+j=n} \lambda^i(x) \lambda^j(y)$.
Examples are, for instance, the topological $K$-groups $K(M)$ and $K_G(M)$, $G$ a compact Lie group (cf. $K$-theory), and the complex representation ring $R(G)$ of a finite group $G$ (cf. Representation of a compact group). In all these cases the $\lambda^n$ are induced by taking exterior powers. For instance, for $M = \text{pt}$, $K(M) = \mathbf{Z}$ and the $\lambda$-structure is given by $\lambda^n(m) = \binom{m}{n}$ (binomial coefficients; the formula $\binom{m_1+m_2}{n} = \sum_{i+j=n} \binom{m_1}{i} \binom{m_2}{j}$ follows by the binomial expansion theorem from $(X+Y)^{m_1+m_2} = (X+Y)^{m_1} (X+Y)^{m_2}$.
Let $R$ be any commutative ring with unit element 1. Consider the set of power series in
over
with constant term 1. Multiplication of power series turns
into an Abelian group. A pre-
-ring structure on
defines a homomorphism of Abelian groups
,
, and vice versa.
Let ,
be two elements of
. Formally, write
![]() |
![]() |
and consider the expressions
![]() |
![]() |
The and
are symmetric polynomial expressions in the
's and
's and hence can be written as universal polynomial expressions in the
's and
's. Now define a multiplication on
by
![]() |
(,
), and define operations (mappings)
by
![]() |
The ring with these operations is a pre-
-ring. Given two pre-
-rings
,
, a
-ring homomorphism
is a homomorphism of rings such that
for all
,
.
A pre--ring
is a
-ring if
,
, is a homomorphism of pre-
-rings. The ring
is always a
-ring and so are the standard examples
,
,
of pre-
-rings mentioned above.
On the other hand, consider a finite group . A finite
-set is a finite set together with an action of
on it. Using disjoint union and Cartesian products with diagonal action, the isomorphism classes of finite
-sets form a semi-ring,
. The associated Grothendieck ring
(cf. Grothendieck group) is called the Burnside ring. On
, define operations
by
(set of
-element subsets of
) (with the natural induced
-action). This generalizes the
-operations
on
,
. Using iii), the
extend to
, making the Burnside ring into a pre-
-ring. As a rule this pre-
-ring is not a
-ring, [a9].
Instead of pre--ring and
-ring one also finds, respectively, the phrases
-ring and special
-ring in the literature.
Let be a pre-
-ring. One defines new operations
by the formula
![]() |
These operations are called the Adams operations on the pre--ring
. They were introduced in the case
by J.F. Adams ([a10]).
The Adams operations satisfy
iv) ;
v) .
Let be a torsion-free pre-
-ring; then
is a
-ring if and only if the Adams operations satisfy in addition
vi) ;
vii) ;
viii) .
A ring with operations
satisfying iv)–viii) is sometimes called a
-ring.
The ring is isomorphic to the ring
of (big) Witt vectors (cf. (the editorial comments to) Witt vector):
![]() |
![]() |
Under this isomorphism the Adams operations on
correspond to the Frobenius operations
.
The -structures on the rings
define a functorial morphism of ring-valued functors
. Together with
,
, this defines a co-triple structure on the functor
, and the
-rings are precisely the co-algebras of this co-triple (cf. Triple).
Via the isomorphism one finds "exponential homomorphisms"
![]() |
![]() |
which should be seen as (generalizing) the so-called Artin–Hasse exponential ([a11], [a12]).
Let be the ring homomorphism
![]() |
Then the Artin–Hasse exponential is functorially characterized by
![]() |
where is the Frobenius homomorphism.
Let be the forgetful functor. Then the functor
is right adjoint (cf. Adjoint functor) to
:
![]() |
(cf. [a5], p. 20).
There are (besides the identity) three natural automorphisms of the Abelian group , given by the substitution
, the "inversion"
, and the combination of the two. Correspondingly there are four natural ways to introduce a ring structure on
; the corresponding unit elements are
,
,
,
. All four occur in the literature. The most frequently occurring have
or
as their unit element — here, in the above,
is the unit element —, and
seems to be the most rare case.
-rings were introduced by A. Grothendieck in an algebraic-geometric setting [a2] and were first used in group representation theory by M.F. Atiyah and D.O. Tall ([a1]).
In case is one-dimensional, i.e.
for
, the terminology derives from the case
or
; one has
, whence the name power operations for the
. On the
the operations
are directly defined by
![]() |
References
[a1] | M.F. Atiyah, D.O. Tall, "Group representations, $\lambda$-rings and the $J$-homomorphism" Topology , 8 (1969) pp. 253–297 MR244387 |
[a2] | A. Grothendieck, "La théorie des classes de Chern" Bull. Soc. Math. France , 86 (1958) pp. 137–154 MR0116023 Zbl 0091.33201 |
[a3] | A. Grothendieck, "Classes de faisceaux et théorème de Riemann–Roch" , Sem. Géom. Algébrique , 6 , Springer (1972) pp. 20–77 Zbl 0229.14008 |
[a4] | M. Hazewinkel, "Formal groups and applications" , Acad. Press (1978) pp. 144ff MR0506881 MR0463184 Zbl 0454.14020 |
[a5] | D. Knutson, "$\lambda$-rings and the representation theory of the symmetric group" , Springer (1974) MR0364425 Zbl 0272.20008 |
[a6] | P. Berthelot, "Généralités sur les $\lambda$-anneaux" , Sem. Géom. Algébrique , 6 , Springer (1972) pp. 297–365 |
[a7] | W. Fulton, S. Lang, "Riemann–Roch algebra" , Springer (1985) MR0801033 Zbl 0579.14011 |
[a8] | T. tom Dieck, "Transformation groups and representation theory" , Springer (1979) Zbl 0445.57023 |
[a9] | C. Siebeneicher, "$\lambda$-Ringstrukturen auf dem Burnsidering der Permutationsdarstellungen einer endlichen Gruppe" Math. Z. , 146 (1976) pp. 223–238 MR0390035 Zbl 0306.20011 |
[a10] | J.F. Adams, "Vectorfields on spheres" Ann. of Math. , 75 (1962) pp. 603–632 |
[a11] | M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" Trans. Amer. Math. Soc. , 259 (1980) pp. 47–63 MR0561822 Zbl 0437.13014 |
[a12] | E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der $\ell^n$-ten Potenzreste im Körper der $\ell^n$-ten Einheitswurzeln" Abh. Math. Sem. Univ. Hamburg , 6 (1928) pp. 146–162 |
[a13] | G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" Duke Math. J. , 21 (1954) pp. 575–581 MR73645 |
Lambda-ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lambda-ring&oldid=37663