Difference between revisions of "Fabry theorem"
(→Fabry's gap theorem: A converse to the theorem was established by George Pólya) |
m (→Fabry's gap theorem: better) |
||
Line 12: | Line 12: | ||
then the circle $\lvert z\rvert=R$ is a [[natural boundary]]: all points of the cicle are singular points for $f(z)$. The theorem can be generalized to Dirichlet series. | then the circle $\lvert z\rvert=R$ is a [[natural boundary]]: all points of the cicle are singular points for $f(z)$. The theorem can be generalized to Dirichlet series. | ||
− | A converse to the theorem was established by George Pólya. If $\lim\inf | + | A converse to the theorem was established by George Pólya. If $\lim\inf \lambda_n/n$ is finite then there exists a power series with exponent sequence $p_n$, radius of convergence equal to 1, but for which the unit circle is not a natural boundary. |
==Fabry's quotient theorem== | ==Fabry's quotient theorem== |
Revision as of 18:19, 28 December 2014
Fabry's gap theorem
If the exponents $\lambda_n$ in the power series
$$ f(z)=\sum_{n=1}^\infty a_nz^{\lambda_n},$$
with radius of convergence $R$, $0<R<\infty$, satisfy the condition
$$\lim_{n\to\infty}\frac{n}{\lambda_n}=0,$$
then the circle $\lvert z\rvert=R$ is a natural boundary: all points of the cicle are singular points for $f(z)$. The theorem can be generalized to Dirichlet series.
A converse to the theorem was established by George Pólya. If $\lim\inf \lambda_n/n$ is finite then there exists a power series with exponent sequence $p_n$, radius of convergence equal to 1, but for which the unit circle is not a natural boundary.
Fabry's quotient theorem
If the coefficients in the power series
$$ f(z)=\sum_{n=0}^\infty a_nz^n,$$
with unit radius of convergence, satisfy the condition
$$ \lim_{n\to \infty}\frac{a_n}{a_{n+1}}=s,$$
then $z=s$ is a singular point of $f(z)$.
These theorems were obtained by E. Fabry [Fa].
References
[Bi] | L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) |
[Di] | P. Dienes, "The Taylor series" , Oxford Univ. Press & Dover (1957) |
[Fa] | E. Fabry, "Sur les points singuliers d'une fonction donée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux" Ann. Sci. Ecole Norm. Sup. , 13 (1896) pp. 367–399 |
[La] | E. Landau, "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , Das Kontinuum und andere Monographien , Chelsea, reprint (1973) |
[Le] | A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) |
Fabry theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fabry_theorem&oldid=35918