Namespaces
Variants
Actions

Difference between revisions of "Integral domain"

From Encyclopedia of Mathematics
Jump to: navigation, search
(links)
(MSC 13G05)
Line 1: Line 1:
{{TEX|done}}
+
{{TEX|done}}{{MSC|13G05}}
 +
 
 
''integral ring''
 
''integral ring''
  
A [[commutative ring]] with identity and without divisors of zero (cf. [[Divisor]]). Any field, and also any ring with identity contained in a field, is an integral domain. Conversely, an integral domain can be imbedded in a field. Such an imbedding is given by the construction of the [[field of fractions]].
+
A [[commutative ring]] with identity and without divisors of zero (cf. [[Zero divisor]]). Any field, and also any ring with identity contained in a field, is an integral domain. Conversely, an integral domain can be imbedded in a field. Such an imbedding is given by the construction of the [[field of fractions]].
  
 
If $A$ is an integral domain, then the ring of polynomials $A[X]$ and the ring of formal power series $A[[X]]$ over $A$ are also integral domains. If $A$ is a commutative ring with identity and $I$ is any ideal in $A$, then the ring $A/I$ is an integral domain if and only if $I$ is a [[Prime ideal|prime ideal]]. A ring $A$ without nilpotents is an integral domain if and only if the spectrum of $A$ is an irreducible topological space (cf. [[Spectrum of a ring|Spectrum of a ring]]).
 
If $A$ is an integral domain, then the ring of polynomials $A[X]$ and the ring of formal power series $A[[X]]$ over $A$ are also integral domains. If $A$ is a commutative ring with identity and $I$ is any ideal in $A$, then the ring $A/I$ is an integral domain if and only if $I$ is a [[Prime ideal|prime ideal]]. A ring $A$ without nilpotents is an integral domain if and only if the spectrum of $A$ is an irreducible topological space (cf. [[Spectrum of a ring|Spectrum of a ring]]).

Revision as of 22:15, 28 November 2014

2020 Mathematics Subject Classification: Primary: 13G05 [MSN][ZBL]

integral ring

A commutative ring with identity and without divisors of zero (cf. Zero divisor). Any field, and also any ring with identity contained in a field, is an integral domain. Conversely, an integral domain can be imbedded in a field. Such an imbedding is given by the construction of the field of fractions.

If $A$ is an integral domain, then the ring of polynomials $A[X]$ and the ring of formal power series $A[[X]]$ over $A$ are also integral domains. If $A$ is a commutative ring with identity and $I$ is any ideal in $A$, then the ring $A/I$ is an integral domain if and only if $I$ is a prime ideal. A ring $A$ without nilpotents is an integral domain if and only if the spectrum of $A$ is an irreducible topological space (cf. Spectrum of a ring).

Sometimes commutativity of $A$ is not required in the definition of an integral domain. Skew-fields and subrings of a skew-field containing the identity are examples of non-commutative integral domains. However, it is not true, in general, that an arbitrary non-commutative integral domain can be imbedded in a skew-field (see [2], and Imbedding of rings).

References

[1] S. Lang, "Algebra" , Addison-Wesley (1965)
[2] P.M. Cohn, "Free rings and their relations" , Acad. Press (1985)
[3] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)
How to Cite This Entry:
Integral domain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_domain&oldid=35064
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article