Difference between revisions of "Euler function"
(Category:Number theory) |
(define totative) |
||
Line 1: | Line 1: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | The arithmetic function $\phi$ whose value at $n$ is equal to the number of positive integers not exceeding $n$ and relatively prime to $n$. The Euler function is multiplicative, that is $\phi(1)=1$ and $\phi(mn)=\phi(m)\phi(n)$ for $(m,n)=1$. The function $\phi(n)$ satisfies the relations | + | |
+ | ''Euler's totient function'' | ||
+ | |||
+ | The arithmetic function $\phi$ whose value at $n$ is equal to the number of positive integers not exceeding $n$ and relatively prime to $n$ (the "totatives" of $n$). The Euler function is a [[multiplicative arithmetic function]], that is $\phi(1)=1$ and $\phi(mn)=\phi(m)\phi(n)$ for $(m,n)=1$. The function $\phi(n)$ satisfies the relations | ||
$$\sum_{d|n}\phi(d)=n,$$ | $$\sum_{d|n}\phi(d)=n,$$ | ||
Line 11: | Line 14: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Chandrasekharan, "Introduction to analytic number theory" , Springer (1968) {{MR|0249348}} {{ZBL|0169.37502}}</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> K. Chandrasekharan, "Introduction to analytic number theory" , Springer (1968) {{MR|0249348}} {{ZBL|0169.37502}}</TD></TR> | ||
+ | </table> | ||
Line 25: | Line 30: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8 {{MR|0568909}} {{ZBL|0423.10001}}</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8 {{MR|0568909}} {{ZBL|0423.10001}}</TD></TR> | ||
+ | </table> | ||
[[Category:Number theory]] | [[Category:Number theory]] |
Revision as of 21:19, 18 October 2014
Euler's totient function
The arithmetic function $\phi$ whose value at $n$ is equal to the number of positive integers not exceeding $n$ and relatively prime to $n$ (the "totatives" of $n$). The Euler function is a multiplicative arithmetic function, that is $\phi(1)=1$ and $\phi(mn)=\phi(m)\phi(n)$ for $(m,n)=1$. The function $\phi(n)$ satisfies the relations
$$\sum_{d|n}\phi(d)=n,$$
$$c\frac{n}{\ln\ln n}\leq\phi(n)\leq n,$$
$$\sum_{n\leq x}\phi(n)=\frac{3}{\pi^2}x^2+O(x\ln x).$$
It was introduced by L. Euler (1763).
References
[1] | K. Chandrasekharan, "Introduction to analytic number theory" , Springer (1968) MR0249348 Zbl 0169.37502 |
Comments
The function $\phi(n)$ can be evaluated by $\phi(n)=n\prod_{p|n}(1-p^{-1})$, where the product is taken over all primes dividing $n$, cf. [a1].
For a derivation of the asymptotic formula in the article above, as well as of the formula
$$\lim_{n\to\infty}\inf\phi(n)\frac{\ln\ln n}{n}=e^{-\gamma},$$
where $\gamma$ is the Euler constant, see also [a1], Chapts. 18.4 and 18.5.
References
[a1] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8 MR0568909 Zbl 0423.10001 |
Euler function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler_function&oldid=33824