Difference between revisions of "Lagrange spectrum"
(name Freiman's constant) |
(MSC 11J06) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}}{{MSC|11J06}} | ||
+ | |||
The set of Lagrange constants in the problem of rational approximation to real numbers. The Lagrange spectrum is strictly contained in the Markov spectrum (see [[Markov spectrum problem|Markov spectrum problem]]). | The set of Lagrange constants in the problem of rational approximation to real numbers. The Lagrange spectrum is strictly contained in the Markov spectrum (see [[Markov spectrum problem|Markov spectrum problem]]). | ||
Line 18: | Line 20: | ||
<TR><TD valign="top">[a2]</TD> <TD valign="top"> Steven R. Finch, ''Mathematical Constants'', Cambridge University Press (2003) ISBN 0-521-81805-2</TD></TR> | <TR><TD valign="top">[a2]</TD> <TD valign="top"> Steven R. Finch, ''Mathematical Constants'', Cambridge University Press (2003) ISBN 0-521-81805-2</TD></TR> | ||
</table> | </table> | ||
− | |||
− |
Revision as of 17:41, 4 December 2014
2020 Mathematics Subject Classification: Primary: 11J06 [MSN][ZBL]
The set of Lagrange constants in the problem of rational approximation to real numbers. The Lagrange spectrum is strictly contained in the Markov spectrum (see Markov spectrum problem).
Given positive real $\alpha$, define the homogeneous approximation constant, or Lagrange constant, $\lambda(\alpha)$, to be the supremum of values $c$ for which $$ \left\vert{\alpha -\frac{p}{q} }\right\vert < \frac{1}{c q^2} $$ has infinitely many solutions in coprime integers $p,q$. The Lagrange spectrum $L$ is the set of all values taken by the function $\lambda$.
The smallest number in $L$ is $\sqrt{5}$. The Lagrange and the Markov spectrum agree in the range [2,3]. Each spectrum contains the infinite half-line $$ x > 4 + \frac{253589820 + 283748\sqrt{462}}{491993569} \sim 4.5278395661 \ldots $$ this is Freiman's constant.
References
[a1] | A.V. Malyshev, "Markov and Lagrange spectra (a survey of the literature)" Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. , 67 (1977) pp. 5–38 (In Russian) |
[a2] | Steven R. Finch, Mathematical Constants, Cambridge University Press (2003) ISBN 0-521-81805-2 |
Lagrange spectrum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lagrange_spectrum&oldid=33790