Difference between revisions of "Hopf-Rinow theorem"
(TeX) |
m (links) |
||
Line 1: | Line 1: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | If $M$ is a connected Riemannian space with | + | If $M$ is a connected [[Riemannian space]] with [[Riemannian metric]] $\rho$ and a [[Levi-Civita connection]], then the following assertions are equivalent: |
− | 1) $M$ is complete; | + | 1) $M$ is a [[complete Riemannian space]]; |
− | 2) for every point $p\in M$ the [[ | + | 2) for every point $p\in M$ the [[exponential mapping]] $\exp_p$ is defined on the whole tangent space $M_p$; |
3) every closed set $A\subset M$ that is bounded with respect to $\rho$ is compact. | 3) every closed set $A\subset M$ that is bounded with respect to $\rho$ is compact. | ||
Line 17: | Line 17: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hopf, W. Rinow, "Ueber den Begriff der vollständigen differentialgeometrischen Flächen" ''Comm. Math. Helv.'' , '''3''' (1931) pp. 209–225</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. de Rham, "Sur la réducibilité d'un espace de Riemann" ''Comm. Math. Helv.'' , '''26''' (1952) pp. 328–344</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.E. Cohn-Vossen, "Some problems of differential geometry in the large" , Moscow (1959) (In Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hopf, W. Rinow, "Ueber den Begriff der vollständigen differentialgeometrischen Flächen" ''Comm. Math. Helv.'' , '''3''' (1931) pp. 209–225</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> G. de Rham, "Sur la réducibilité d'un espace de Riemann" ''Comm. Math. Helv.'' , '''26''' (1952) pp. 328–344</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> S.E. Cohn-Vossen, "Some problems of differential geometry in the large" , Moscow (1959) (In Russian)</TD></TR> | ||
+ | </table> | ||
Line 27: | Line 32: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR> | ||
+ | </table> |
Latest revision as of 22:13, 7 March 2016
If $M$ is a connected Riemannian space with Riemannian metric $\rho$ and a Levi-Civita connection, then the following assertions are equivalent:
1) $M$ is a complete Riemannian space;
2) for every point $p\in M$ the exponential mapping $\exp_p$ is defined on the whole tangent space $M_p$;
3) every closed set $A\subset M$ that is bounded with respect to $\rho$ is compact.
Corollary:
Any two points $p,q\in M$ can be joined in $M$ by a geodesic of length $\rho(p,q)$. This was established by H. Hopf and W. Rinow [1].
A generalization of the Hopf–Rinow theorem (see [4]) is: If $p$ and $q$ are two points in $M$, then either there exists a curve joining them in a shortest way or there exists a geodesic $L$ emanating from $p$ with the following properties: 1) $L$ is homeomorphic to $0\leq t<1$; 2) if a sequence of points on $L$ does not have limit points on $L$, then it does not have limit points in $M$, that is, $L$ is closed in $M$; 3) $L$ contains the shortest connection between any two points on $L$; 4) $\rho(p,x)+\rho(x,q)=\rho(p,q)$ for every point $x\in L$; and 5) the length of $L$ is finite and does not exceed $\rho(p,q)$. Here the function $\rho(p,q)$ is not necessarily symmetric, and every point can be joined in a shortest possible (not necessarily unique) way to any point in a certain neighbourhood $U_p$.
Corollary:
If there are no bounded rays in $M$, then every bounded set in $M$ is compact.
References
[1] | H. Hopf, W. Rinow, "Ueber den Begriff der vollständigen differentialgeometrischen Flächen" Comm. Math. Helv. , 3 (1931) pp. 209–225 |
[2] | G. de Rham, "Sur la réducibilité d'un espace de Riemann" Comm. Math. Helv. , 26 (1952) pp. 328–344 |
[3] | D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) |
[4] | S.E. Cohn-Vossen, "Some problems of differential geometry in the large" , Moscow (1959) (In Russian) |
Comments
Let $p\in M$. The manifold $M$ is called geodesically complete at $p$ if $\exp_p$ is defined on all of $T_pM$. The manifold $M$ is geodesically complete if this holds for all $p$. The Hopf–Rinow theorem also includes the statement that geodesic completeness is equivalent to geodesic completeness at one $p\in M$.
A geodesic joining $p$ and $q$ and of minimal length is called a minimizing geodesic.
References
[a1] | W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) |
Hopf-Rinow theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hopf-Rinow_theorem&oldid=32950