Namespaces
Variants
Actions

Difference between revisions of "Iso-optic curve"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m (gather refs)
 
Line 3: Line 3:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)  pp. 232</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''II''' , Springer  (1987)  pp. 239</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  F.G. Texeira,  "Traité des courbes spéciales remarquables planes on gauches" , Coïmbre  (1908–1915)</TD></TR></table>
 
 
 
 
====Comments====
 
 
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)  pp. 232</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''II''' , Springer  (1987)  pp. 239</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  F.G. Texeira,  "Traité des courbes spéciales remarquables planes on gauches" , Coïmbre  (1908–1915)</TD></TR></table>
 

Latest revision as of 16:54, 8 April 2023

A plane curve that is the locus of a vertex of given angle $\gamma$ that moves in the plane in such a way that its sides are tangents to a given curve for all positions of the angle. If $\gamma=\pi/2$, then the iso-optic curve is called an ortho-optic curve. For example, the ortho-optic curve of an ellipse is a circle.

References

[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)
[a1] K. Fladt, "Analytische Geometrie spezieller Kurven" , Akad. Verlagsgesell. (1962)
[a2] M. Berger, "Geometry" , I , Springer (1987) pp. 232
[a3] M. Berger, "Geometry" , II , Springer (1987) pp. 239
[a4] F.G. Texeira, "Traité des courbes spéciales remarquables planes on gauches" , Coïmbre (1908–1915)
How to Cite This Entry:
Iso-optic curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Iso-optic_curve&oldid=32377
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article