Namespaces
Variants
Actions

Difference between revisions of "Neyman-Pearson lemma"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
Line 3: Line 3:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J. Neyman,  E.S. Pearson,  "On the problem of the most efficient tests of statistical hypotheses"  ''Philos. Trans. Roy. Soc. London Ser. A.'' , '''231'''  (1933)  pp. 289–337</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.L. Lehmann,  "Statistical hypotheses testing" , Wiley  (1978)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  J. Neyman,  E.S. Pearson,  "On the problem of the most efficient tests of statistical hypotheses"  ''Philos. Trans. Roy. Soc. London Ser. A.'' , '''231'''  (1933)  pp. 289–337</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  E.L. Lehmann,  "Statistical hypotheses testing" , Wiley  (1978)</TD></TR>
 +
</table>

Revision as of 07:22, 24 March 2023

A lemma asserting that in the problem of statistically testing a simple hypothesis $H_0$ against a simple alternative $H_1$ the likelihood-ratio test is a most-powerful test among all statistical tests having one and the same given significance level. It was proved by J. Neyman and E.S. Pearson [1]. It is often called the fundamental lemma of mathematical statistics. See also Statistical hypotheses, verification of.

References

[1] J. Neyman, E.S. Pearson, "On the problem of the most efficient tests of statistical hypotheses" Philos. Trans. Roy. Soc. London Ser. A. , 231 (1933) pp. 289–337
[2] E.L. Lehmann, "Statistical hypotheses testing" , Wiley (1978)
How to Cite This Entry:
Neyman-Pearson lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Neyman-Pearson_lemma&oldid=31760
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article