|
|
Line 1: |
Line 1: |
− | In 1907, H. Poincaré wrote a seminal paper, [[#References|[a6]]], in which he showed that two real hypersurfaces in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104701.png" /> are, in general, biholomorphically inequivalent (cf. [[Biholomorphic mapping|Biholomorphic mapping]]; [[Hypersurface|Hypersurface]]). Later, E. Cartan [[#References|[a10]]], [[#References|[a11]]] found all the invariants that distinguish one real hypersurface from another. The general solution for complex dimensions greater than two was given by S.S. Chern and J. Moser [[#References|[a3]]] and N. Tanaka [[#References|[a8]]], [[#References|[a7]]].
| + | <!-- |
| + | c1104701.png |
| + | $#A+1 = 67 n = 1 |
| + | $#C+1 = 67 : ~/encyclopedia/old_files/data/C110/C.1100470 CR\AAhmanifold |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The concept of a CR-manifold (CR-structure) has been defined having in mind the geometric structure induced on a real hypersurface of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104702.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104703.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104704.png" /> be a real [[Differentiable manifold|differentiable manifold]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104705.png" /> the [[Tangent bundle|tangent bundle]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104706.png" />. One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104707.png" /> is a CR-manifold if there exists a complex subbundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104708.png" /> of the complexified tangent bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c1104709.png" /> satisfying the conditions:
| + | In 1907, H. Poincaré wrote a seminal paper, [[#References|[a6]]], in which he showed that two real hypersurfaces in $ \mathbf C ^ {2} $ |
| + | are, in general, biholomorphically inequivalent (cf. [[Biholomorphic mapping|Biholomorphic mapping]]; [[Hypersurface|Hypersurface]]). Later, E. Cartan [[#References|[a10]]], [[#References|[a11]]] found all the invariants that distinguish one real hypersurface from another. The general solution for complex dimensions greater than two was given by S.S. Chern and J. Moser [[#References|[a3]]] and N. Tanaka [[#References|[a8]]], [[#References|[a7]]]. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047010.png" />;
| + | The concept of a CR-manifold (CR-structure) has been defined having in mind the geometric structure induced on a real hypersurface of $ \mathbf C ^ {n} $, |
| + | $ n \geq 2 $. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047011.png" /> is involutive, i.e., for any complex vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047013.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047014.png" /> the [[Lie bracket|Lie bracket]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047015.png" /> is also in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047016.png" />.
| + | Let $ M $ |
| + | be a real [[Differentiable manifold|differentiable manifold]] and $ TM $ |
| + | the [[Tangent bundle|tangent bundle]] of $ M $. |
| + | One says that $ M $ |
| + | is a CR-manifold if there exists a complex subbundle $ H $ |
| + | of the complexified tangent bundle $ \mathbf C \otimes TM $ |
| + | satisfying the conditions: |
| | | |
− | Alternatively, by using real vector bundles it can be proved (cf. [[#References|[a1]]]) that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047017.png" /> is a CR-manifold if and only if there exists an almost-complex distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047018.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047019.png" /> (i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047020.png" /> is a vector subbundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047022.png" /> is an [[Almost-complex structure|almost-complex structure]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047023.png" />) such that
| + | $ H \cap {\overline{H}\; } = \{ 0 \} $; |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047024.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047025.png" />;
| + | $ H $ |
| + | is involutive, i.e., for any complex vector fields $ U $ |
| + | and $ V $ |
| + | in $ H $ |
| + | the [[Lie bracket|Lie bracket]] $ [ U,V ] $ |
| + | is also in $ H $. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047026.png" /> for any real vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047028.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047029.png" />.
| + | Alternatively, by using real vector bundles it can be proved (cf. [[#References|[a1]]]) that $ M $ |
| + | is a CR-manifold if and only if there exists an almost-complex distribution $ ( D,J ) $ |
| + | on $ M $( |
| + | i.e., $ D $ |
| + | is a vector subbundle of $ TM $ |
| + | and $ J $ |
| + | is an [[Almost-complex structure|almost-complex structure]] on $ D $) |
| + | such that |
| | | |
− | Thus the CR-structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047030.png" /> is determined either by the complex vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047031.png" /> or by the almost-complex distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047032.png" />. The abbreviation CR refers to A.L. Cauchy and B. Riemann, because, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047033.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047035.png" /> consists of the induced Cauchy–Riemann operators (cf. [[Cauchy-Riemann equations]]).
| + | $ [ JX,JY ] - [ X,Y ] $ |
| + | lies in $ D $; |
| | | |
− | A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047036.png" />-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047037.png" /> is called a CR-function if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047038.png" /> for all complex vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047039.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047040.png" />. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047041.png" />-mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047042.png" /> is said to be a CR-mapping if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047043.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047044.png" /> is the tangent mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047045.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047046.png" /> is a [[Diffeomorphism|diffeomorphism]], one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047047.png" /> is a pseudo-conformal mapping and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047049.png" /> are CR-diffeomorphic or, briefly, that they are equivalent. A CR-structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047050.png" /> is said to be realizable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047051.png" /> is equivalent to some real hypersurface of a complex Euclidean space.
| + | $ [ JX,JY ] - [ X,Y ] - J ( [ JX,Y ] + [ X,JY ] ) = 0 $ |
| + | for any real vector fields $ X $, |
| + | $ Y $ |
| + | in $ D $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047052.png" /> be the natural projection mapping. Then the Levi form for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047053.png" /> is the mapping
| + | Thus the CR-structure on $ M $ |
| + | is determined either by the complex vector bundle $ H $ |
| + | or by the almost-complex distribution $ ( D,J ) $. |
| + | The abbreviation CR refers to A.L. Cauchy and B. Riemann, because, for $ M $ |
| + | in $ \mathbf C ^ {n} $, |
| + | $ H $ |
| + | consists of the induced Cauchy–Riemann operators (cf. [[Cauchy-Riemann equations]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047054.png" /></td> </tr></table>
| + | A $ C ^ {1} $- |
| + | function $ f : {( M,H ) } \rightarrow \mathbf C $ |
| + | is called a CR-function if $ Lf = 0 $ |
| + | for all complex vector fields $ L $ |
| + | in $ H $. |
| + | A $ C ^ {1} $- |
| + | mapping $ F : {( M,H ) } \rightarrow {( {\widetilde{M} } , {\widetilde{H} } ) } $ |
| + | is said to be a CR-mapping if $ F _ {*} H \subset {\widetilde{H} } $, |
| + | where $ F _ {*} $ |
| + | is the tangent mapping of $ F $. |
| + | In particular, if $ F $ |
| + | is a [[Diffeomorphism|diffeomorphism]], one says that $ F $ |
| + | is a pseudo-conformal mapping and that $ M $ |
| + | and $ {\widetilde{M} } $ |
| + | are CR-diffeomorphic or, briefly, that they are equivalent. A CR-structure on $ M $ |
| + | is said to be realizable if $ M $ |
| + | is equivalent to some real hypersurface of a complex Euclidean space. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047055.png" /></td> </tr></table>
| + | Let $ \pi : {\mathbf C \otimes TM } \rightarrow {( \mathbf C \otimes TM ) / ( H \oplus {\overline{H}\; } ) } $ |
| + | be the natural projection mapping. Then the Levi form for $ M $ |
| + | is the mapping |
| | | |
− | for any complex vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047056.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047057.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047058.png" /> is the real hypersurface in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047059.png" /> given by the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047060.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047061.png" /> is smooth, then the Levi form for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047062.png" /> is identified with the restriction of the complex Hessian of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047063.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047064.png" /> (cf. also [[Hessian matrix|Hessian matrix]]). When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047065.png" /> is positive- or negative-definite on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047066.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047067.png" /> is strictly pseudo-convex. | + | $$ |
| + | h : H \rightarrow {( \mathbf C \otimes TM ) / ( H \oplus {\overline{H}\; } ) } , |
| + | $$ |
| + | |
| + | $$ |
| + | h ( U ) = { |
| + | \frac{1}{2i } |
| + | } \pi ( [ U, {\overline{U}\; } ] ) , |
| + | $$ |
| + | |
| + | for any complex vector field $ U $ |
| + | in $ H $. |
| + | If $ M $ |
| + | is the real hypersurface in $ \mathbf C ^ {n} $ |
| + | given by the equation $ g ( z ) = 0 $, |
| + | where $ g : {\mathbf C ^ {n} } \rightarrow \mathbf R $ |
| + | is smooth, then the Levi form for $ M $ |
| + | is identified with the restriction of the complex Hessian of $ g $ |
| + | to $ H $( |
| + | cf. also [[Hessian matrix|Hessian matrix]]). When $ h $ |
| + | is positive- or negative-definite on $ M $, |
| + | one says that $ M $ |
| + | is strictly pseudo-convex. |
| | | |
| The differential geometry of CR-manifolds (cf. [[#References|[a4]]]) has potential applications to both partial differential equations (cf. [[#References|[a2]]]) and mathematical physics (cf. [[#References|[a5]]] and [[#References|[a9]]]). | | The differential geometry of CR-manifolds (cf. [[#References|[a4]]]) has potential applications to both partial differential equations (cf. [[#References|[a2]]]) and mathematical physics (cf. [[#References|[a5]]] and [[#References|[a9]]]). |
In 1907, H. Poincaré wrote a seminal paper, [a6], in which he showed that two real hypersurfaces in $ \mathbf C ^ {2} $
are, in general, biholomorphically inequivalent (cf. Biholomorphic mapping; Hypersurface). Later, E. Cartan [a10], [a11] found all the invariants that distinguish one real hypersurface from another. The general solution for complex dimensions greater than two was given by S.S. Chern and J. Moser [a3] and N. Tanaka [a8], [a7].
The concept of a CR-manifold (CR-structure) has been defined having in mind the geometric structure induced on a real hypersurface of $ \mathbf C ^ {n} $,
$ n \geq 2 $.
Let $ M $
be a real differentiable manifold and $ TM $
the tangent bundle of $ M $.
One says that $ M $
is a CR-manifold if there exists a complex subbundle $ H $
of the complexified tangent bundle $ \mathbf C \otimes TM $
satisfying the conditions:
$ H \cap {\overline{H}\; } = \{ 0 \} $;
$ H $
is involutive, i.e., for any complex vector fields $ U $
and $ V $
in $ H $
the Lie bracket $ [ U,V ] $
is also in $ H $.
Alternatively, by using real vector bundles it can be proved (cf. [a1]) that $ M $
is a CR-manifold if and only if there exists an almost-complex distribution $ ( D,J ) $
on $ M $(
i.e., $ D $
is a vector subbundle of $ TM $
and $ J $
is an almost-complex structure on $ D $)
such that
$ [ JX,JY ] - [ X,Y ] $
lies in $ D $;
$ [ JX,JY ] - [ X,Y ] - J ( [ JX,Y ] + [ X,JY ] ) = 0 $
for any real vector fields $ X $,
$ Y $
in $ D $.
Thus the CR-structure on $ M $
is determined either by the complex vector bundle $ H $
or by the almost-complex distribution $ ( D,J ) $.
The abbreviation CR refers to A.L. Cauchy and B. Riemann, because, for $ M $
in $ \mathbf C ^ {n} $,
$ H $
consists of the induced Cauchy–Riemann operators (cf. Cauchy-Riemann equations).
A $ C ^ {1} $-
function $ f : {( M,H ) } \rightarrow \mathbf C $
is called a CR-function if $ Lf = 0 $
for all complex vector fields $ L $
in $ H $.
A $ C ^ {1} $-
mapping $ F : {( M,H ) } \rightarrow {( {\widetilde{M} } , {\widetilde{H} } ) } $
is said to be a CR-mapping if $ F _ {*} H \subset {\widetilde{H} } $,
where $ F _ {*} $
is the tangent mapping of $ F $.
In particular, if $ F $
is a diffeomorphism, one says that $ F $
is a pseudo-conformal mapping and that $ M $
and $ {\widetilde{M} } $
are CR-diffeomorphic or, briefly, that they are equivalent. A CR-structure on $ M $
is said to be realizable if $ M $
is equivalent to some real hypersurface of a complex Euclidean space.
Let $ \pi : {\mathbf C \otimes TM } \rightarrow {( \mathbf C \otimes TM ) / ( H \oplus {\overline{H}\; } ) } $
be the natural projection mapping. Then the Levi form for $ M $
is the mapping
$$
h : H \rightarrow {( \mathbf C \otimes TM ) / ( H \oplus {\overline{H}\; } ) } ,
$$
$$
h ( U ) = {
\frac{1}{2i }
} \pi ( [ U, {\overline{U}\; } ] ) ,
$$
for any complex vector field $ U $
in $ H $.
If $ M $
is the real hypersurface in $ \mathbf C ^ {n} $
given by the equation $ g ( z ) = 0 $,
where $ g : {\mathbf C ^ {n} } \rightarrow \mathbf R $
is smooth, then the Levi form for $ M $
is identified with the restriction of the complex Hessian of $ g $
to $ H $(
cf. also Hessian matrix). When $ h $
is positive- or negative-definite on $ M $,
one says that $ M $
is strictly pseudo-convex.
The differential geometry of CR-manifolds (cf. [a4]) has potential applications to both partial differential equations (cf. [a2]) and mathematical physics (cf. [a5] and [a9]).
References
[a1] | A. Bejancu, "Geometry of CR submanifolds" , Reidel (1986) |
[a2] | A. Boggess, "CR manifolds and tangential Cauchy–Riemann complex" , CRC (1991) |
[a3] | S.S. Chern, J. Moser, "Real hypersurfaces in complex manifolds" Acta Math. , 133 (1974) pp. 219–271 |
[a4] | H. Jacobowitz, "An introduction to CR structures" , Math. Surveys and Monographs , 32 , Amer. Math. Soc. (1990) |
[a5] | R. Penrose, "Physical space-time and non-realizable CR structures" , Proc. Symp. Pure Math. , 39 , Amer. Math. Soc. (1983) pp. 401–422 |
[a6] | H. Poincaré, "Les functions analytiques de deux variables et la représentation conforme" Rend. Circ. Mat. Palermo , 23 (1907) pp. 185–220 |
[a7] | N. Tanaka, "On the pseudo-conformal geometry of hypersurfaces of the space of complex variables" J. Math. Soc. Japan , 14 (1962) pp. 397–429 |
[a8] | N. Tanaka, "On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections" Japan J. Math. (N.S.) , 2 (1976) pp. 131–190 |
[a9] | J.R. Wells, Jr., "Complex manifolds and mathematical physics" Bull. Amer. Math. Soc. (N.S.) , 1 (1979) pp. 296–336 |
[a10] | É. Cartan, "Sur l'équivalence pseudo-conforme des hypersurfaces de l'espace de deux variables complexes I." Ann. Mathém. , 11 (1932) pp. 17–90 |
[a11] | É. Cartan, "Sur l'équivalence pseudo-conforme des hypersurfaces de l'espace de deux variable complexes II." Ann. Scuola Norm. Sup. Pisa , 1 (1932) pp. 333–354 |