Difference between revisions of "Dirichlet criterion (convergence of series)"
From Encyclopedia of Mathematics
(→References: expand bibliodata) |
|||
Line 6: | Line 6: | ||
====References==== | ====References==== | ||
{| | {| | ||
− | |||
|- | |- | ||
− | |valign="top"|{{Ref|Di}}|| P.G.L. Dirichlet, | + | |valign="top"|{{Ref|Di}}|| P.G.L. Dirichlet, "Démonstration d’un théorème d’Abel", ''J. de Math. (2)'' , '''7''' (1862) pp. 253–255 |
|- | |- | ||
|} | |} |
Revision as of 19:44, 16 January 2016
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
A criterion for the convergence of the series $\sum_n a_n b_n$, where $a_n$ are real numbers and $b_n$ are complex numbers, established by P.G.L. Dirichlet in [Di]. If a sequence of real numbers $a_n$ converges monotonically to zero, and the sequence of partial sums of the series $\sum_n b_n$ is bounded (the terms of this series may also be complex), then the series $\sum_n a_n b_n$ converges. The criterion is related to Dedekind's criterion.
References
[Di] | P.G.L. Dirichlet, "Démonstration d’un théorème d’Abel", J. de Math. (2) , 7 (1862) pp. 253–255 |
How to Cite This Entry:
Dirichlet criterion (convergence of series). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_criterion_(convergence_of_series)&oldid=30914
Dirichlet criterion (convergence of series). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_criterion_(convergence_of_series)&oldid=30914
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article