Difference between revisions of "Lipschitz condition"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
(TeX encoding is done) |
||
Line 1: | Line 1: | ||
− | A restriction on the behaviour of increase of a function. If for any points | + | A restriction on the behaviour of increase of a function. If for any points $x$ and $x'$ belonging to an interval $[a,b]$ the increase of a function $f$ satisfies the inequality |
+ | \begin{equation}\label{eq:1} | ||
+ | |f(x)-f(x')| \leq M|x-x'|^{\alpha}, | ||
+ | \end{equation} | ||
− | < | + | where $0<\alpha\leq1$ and $M$ is a constant, then one says that $f$ satisfies a Lipschitz condition of order $\alpha$ on $[a,b]$ and writes $f\in\operatorname{Lip}\alpha$, $f\in\operatorname{Lip}_M\alpha$ or $f\in H^{\alpha}(M)$. Every function that satisfies a Lipschitz condition with some $\alpha>0$ on $[a,b]$ is uniformly continuous on $[a,b]$, and functions that satisfy a Lipschitz condition of order $\alpha=1$ are absolutely continuous (cf. [[Absolute continuity|Absolute continuity]]; [[Uniform continuity|Uniform continuity]]). A function that has a bounded derivative on $[a,b]$ satisfies a Lipschitz condition on $[a,b]$ with any $\alpha\leq 1$. |
− | + | The Lipschitz condition \eqref{eq:1} is equivalent to the condition | |
+ | \begin{equation} | ||
+ | \omega(\delta,f)\leq M\delta^{\alpha}, | ||
+ | \end{equation} | ||
− | + | where $\omega(\delta,f)$ is the modulus of continuity (cf. [[Continuity, modulus of|Continuity, modulus of]]) of $f$ on $[a,b]$. Lipschitz conditions were first considered by R. Lipschitz [[#References|[1]]] as a sufficient condition for the convergence of the [[Fourier series|Fourier series]] of $f$. In the case $0<\alpha<1$ the condition \eqref{eq:1} is also called a [[Hölder condition|Hölder condition]] of order $\alpha$. | |
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Lipschitz, "De explicatione per series trigonometricas insttuenda functionum unius variablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maximorum et minimorum numerum habent infintum disquisitio" ''J. Reine Angew. Math.'' , '''63''' (1864) pp. 296–308 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988) {{MR|0933759}} {{ZBL|0628.42001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Constructive function theory" , '''1–3''' , F. Ungar (1964–1965) (Translated from Russian) {{MR|1868029}} {{MR|0196342}} {{MR|0196341}} {{MR|0196340}} {{ZBL|1034.01022}} {{ZBL|0178.39701}} {{ZBL|0136.36302}} {{ZBL|0133.31101}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Lipschitz, "De explicatione per series trigonometricas insttuenda functionum unius variablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maximorum et minimorum numerum habent infintum disquisitio" ''J. Reine Angew. Math.'' , '''63''' (1864) pp. 296–308 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988) {{MR|0933759}} {{ZBL|0628.42001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Constructive function theory" , '''1–3''' , F. Ungar (1964–1965) (Translated from Russian) {{MR|1868029}} {{MR|0196342}} {{MR|0196341}} {{MR|0196340}} {{ZBL|1034.01022}} {{ZBL|0178.39701}} {{ZBL|0136.36302}} {{ZBL|0133.31101}} </TD></TR></table> |
Revision as of 08:33, 23 November 2012
A restriction on the behaviour of increase of a function. If for any points $x$ and $x'$ belonging to an interval $[a,b]$ the increase of a function $f$ satisfies the inequality \begin{equation}\label{eq:1} |f(x)-f(x')| \leq M|x-x'|^{\alpha}, \end{equation}
where $0<\alpha\leq1$ and $M$ is a constant, then one says that $f$ satisfies a Lipschitz condition of order $\alpha$ on $[a,b]$ and writes $f\in\operatorname{Lip}\alpha$, $f\in\operatorname{Lip}_M\alpha$ or $f\in H^{\alpha}(M)$. Every function that satisfies a Lipschitz condition with some $\alpha>0$ on $[a,b]$ is uniformly continuous on $[a,b]$, and functions that satisfy a Lipschitz condition of order $\alpha=1$ are absolutely continuous (cf. Absolute continuity; Uniform continuity). A function that has a bounded derivative on $[a,b]$ satisfies a Lipschitz condition on $[a,b]$ with any $\alpha\leq 1$.
The Lipschitz condition \eqref{eq:1} is equivalent to the condition \begin{equation} \omega(\delta,f)\leq M\delta^{\alpha}, \end{equation}
where $\omega(\delta,f)$ is the modulus of continuity (cf. Continuity, modulus of) of $f$ on $[a,b]$. Lipschitz conditions were first considered by R. Lipschitz [1] as a sufficient condition for the convergence of the Fourier series of $f$. In the case $0<\alpha<1$ the condition \eqref{eq:1} is also called a Hölder condition of order $\alpha$.
References
[1] | R. Lipschitz, "De explicatione per series trigonometricas insttuenda functionum unius variablis arbitrariarum, et praecipue earum, quae per variablis spatium finitum valorum maximorum et minimorum numerum habent infintum disquisitio" J. Reine Angew. Math. , 63 (1864) pp. 296–308 |
[2] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) MR0933759 Zbl 0628.42001 |
[3] | I.P. Natanson, "Constructive function theory" , 1–3 , F. Ungar (1964–1965) (Translated from Russian) MR1868029 MR0196342 MR0196341 MR0196340 Zbl 1034.01022 Zbl 0178.39701 Zbl 0136.36302 Zbl 0133.31101 |
Lipschitz condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lipschitz_condition&oldid=28238