Difference between revisions of "Absorbing state"
 (refs format)  | 
				Ulf Rehmann (talk | contribs)  m (tex encoded by computer)  | 
				||
| Line 1: | Line 1: | ||
| − | + | <!--  | |
| + | a0104301.png  | ||
| + | $#A+1 = 26 n = 0  | ||
| + | $#C+1 = 26 : ~/encyclopedia/old_files/data/A010/A.0100430 Absorbing state  | ||
| + | Automatically converted into TeX, above some diagnostics.  | ||
| + | Please remove this comment and the {{TEX|auto}} line below,  | ||
| + | if TeX found to be correct.  | ||
| + | -->  | ||
| + | |||
| + | {{TEX|auto}}  | ||
| + | {{TEX|done}}  | ||
| + | |||
| + | ''of a Markov chain  $  \xi (t) $''  | ||
{{MSC|60J10}}  | {{MSC|60J10}}  | ||
| Line 5: | Line 17: | ||
[[Category:Markov chains]]  | [[Category:Markov chains]]  | ||
| − | A state   | + | A state  $  i $  | 
| + | such that  | ||
| − | + | $$   | |
| + | {\mathsf P} \{ \xi (t) = i \mid  \xi (s) = i \}  =  1  | ||
| + | \  \textrm{ for }  \textrm{ any }  t \geq  s.  | ||
| + | $$  | ||
| − | An example of a [[Markov chain|Markov chain]] with absorbing state   | + | An example of a [[Markov chain|Markov chain]] with absorbing state  $  0 $  | 
| + | is a [[Branching process|branching process]].  | ||
The introduction of additional absorbing states is a convenient technique that enables one to examine the properties of trajectories of a Markov chain that are associated with hitting some set.  | The introduction of additional absorbing states is a convenient technique that enables one to examine the properties of trajectories of a Markov chain that are associated with hitting some set.  | ||
| − | Example. Consider the set   | + | Example. Consider the set  $  S $  | 
| + | of states of a homogeneous Markov chain  $  \xi (t) $  | ||
| + | with discrete time and transition probabilities  | ||
| − | + | $$   | |
| + | p _ {ij}  =  {\mathsf P} \{ \xi (t+1) = j \mid  \xi (t) = i \} ,  | ||
| + | $$  | ||
| − | in which a subset   | + | in which a subset  $  H $  | 
| + | is distinguished and suppose one has to find the probabilities  | ||
| − | + | $$   | |
| + | q _ {ih}  =  {\mathsf P} \{ \xi ( \tau (H)) = h \mid  \xi (0) = i \} ,  | ||
| + | \  i \in S,\  h \in H,  | ||
| + | $$  | ||
| − | where   | + | where  $  \tau (H) =  \mathop{\rm min} \{ {t > 0 } : {\tau (t) \in H } \} $  | 
| + | is the moment of first hitting the set  $  H $.    | ||
| + | If one introduces the auxiliary Markov chain  $  \xi  ^ {*} (t) $  | ||
| + | differing from  $  \xi (t) $  | ||
| + | only in that all states  $  h \in H $  | ||
| + | are absorbing in  $  \xi  ^ {*} (t) $,    | ||
| + | then for  $  h \in H $  | ||
| + | the probabilities  | ||
| − | + | $$   | |
| + | p _ {ih}  ^ {*} (t)  =  {\mathsf P} \{ \xi  ^ {*} (t) =  | ||
| + | h \mid  \xi  ^ {*} (0) = i \} =  | ||
| + | $$  | ||
| − | + | $$   | |
| + | = \   | ||
| + | {\mathsf P} \{ \tau (H) \leq  t, \xi ( \tau (H)) = h \mid  \xi (0) = i \}  | ||
| + | $$  | ||
| − | are monotonically non-decreasing for   | + | are monotonically non-decreasing for  $  t \uparrow \infty $  | 
| + | and  | ||
| − | + | $$ \tag{* }  | |
| + | q _ {ih}  =  \lim\limits _ {t \rightarrow \infty }  p _ {ih}  ^ {*} (t),  | ||
| + | \  i \in S,\  h \in H.  | ||
| + | $$  | ||
By virtue of the basic definition of a Markov chain  | By virtue of the basic definition of a Markov chain  | ||
| − | + | $$   | |
| + | p _ {ih}  ^ {*} (t + 1)  = \   | ||
| + | \sum _ {j \in S } p _ {ij} p _ {ih}  ^ {*} (t),  | ||
| + | \  t \geq  0,\  i \in S \setminus  H,\  h \in H,  | ||
| + | $$  | ||
| − | + | $$   | |
| + | p _ {hh}  ^ {*} (t)  =  1,\  h \in H; \  p _ {ih}  ^ {*} (t)  =  0,\  i, h \in H, i \neq h.  | ||
| + | $$  | ||
| − | The passage to the limit for   | + | The passage to the limit for  $  t \rightarrow \infty $  | 
| + | taking into account (*) gives a system of linear equations for  $  q _ {ih} $:  | ||
| − | + | $$   | |
| + | q _ {ih}  =  \sum _ {j \in S } p _ {ij} q _ {ih} ,\ \   | ||
| + | i \in S \setminus  H,\  h \in H,  | ||
| + | $$  | ||
| − | + | $$   | |
| + | q _ {hh}  =  1,\  h \in H ; \  q _ {ih}  =  0,\  i, h \in H, i \neq h.  | ||
| + | $$  | ||
====References====  | ====References====  | ||
Latest revision as of 16:08, 1 April 2020
of a Markov chain  $  \xi (t) $
2020 Mathematics Subject Classification: Primary: 60J10 [MSN][ZBL]
A state $ i $ such that
$$ {\mathsf P} \{ \xi (t) = i \mid \xi (s) = i \} = 1 \ \textrm{ for } \textrm{ any } t \geq s. $$
An example of a Markov chain with absorbing state $ 0 $ is a branching process.
The introduction of additional absorbing states is a convenient technique that enables one to examine the properties of trajectories of a Markov chain that are associated with hitting some set.
Example. Consider the set $ S $ of states of a homogeneous Markov chain $ \xi (t) $ with discrete time and transition probabilities
$$ p _ {ij} = {\mathsf P} \{ \xi (t+1) = j \mid \xi (t) = i \} , $$
in which a subset $ H $ is distinguished and suppose one has to find the probabilities
$$ q _ {ih} = {\mathsf P} \{ \xi ( \tau (H)) = h \mid \xi (0) = i \} , \ i \in S,\ h \in H, $$
where $ \tau (H) = \mathop{\rm min} \{ {t > 0 } : {\tau (t) \in H } \} $ is the moment of first hitting the set $ H $. If one introduces the auxiliary Markov chain $ \xi ^ {*} (t) $ differing from $ \xi (t) $ only in that all states $ h \in H $ are absorbing in $ \xi ^ {*} (t) $, then for $ h \in H $ the probabilities
$$ p _ {ih} ^ {*} (t) = {\mathsf P} \{ \xi ^ {*} (t) = h \mid \xi ^ {*} (0) = i \} = $$
$$ = \ {\mathsf P} \{ \tau (H) \leq t, \xi ( \tau (H)) = h \mid \xi (0) = i \} $$
are monotonically non-decreasing for $ t \uparrow \infty $ and
$$ \tag{* } q _ {ih} = \lim\limits _ {t \rightarrow \infty } p _ {ih} ^ {*} (t), \ i \in S,\ h \in H. $$
By virtue of the basic definition of a Markov chain
$$ p _ {ih} ^ {*} (t + 1) = \ \sum _ {j \in S } p _ {ij} p _ {ih} ^ {*} (t), \ t \geq 0,\ i \in S \setminus H,\ h \in H, $$
$$ p _ {hh} ^ {*} (t) = 1,\ h \in H; \ p _ {ih} ^ {*} (t) = 0,\ i, h \in H, i \neq h. $$
The passage to the limit for $ t \rightarrow \infty $ taking into account (*) gives a system of linear equations for $ q _ {ih} $:
$$ q _ {ih} = \sum _ {j \in S } p _ {ij} q _ {ih} ,\ \ i \in S \setminus H,\ h \in H, $$
$$ q _ {hh} = 1,\ h \in H ; \ q _ {ih} = 0,\ i, h \in H, i \neq h. $$
References
| [F] | W. Feller, "An introduction to probability theory and its applications", 1, Wiley (1968) | 
Absorbing state. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Absorbing_state&oldid=26359