|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978301.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978302.png" />) be the space of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978303.png" /> times differentiable (respectively, smooth) real-valued functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978304.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978305.png" /> be compact. For a multi-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978306.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978307.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978308.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978309.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783010.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783011.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783012.png" />. The vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783013.png" /> consists of all tuples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783014.png" /> of continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783015.png" /> indexed by the multi-indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783016.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783017.png" />. For instance, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783018.png" /> is a single point, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783019.png" /> consists of sequences of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783020.png" /> real numbers, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783021.png" />, and can be identified with the space of all polynomials of total degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783023.png" /> variables, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783024.png" /> can be seen as the space of all power series in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783025.png" /> variables.
| + | $\def\a{\alpha} |
| + | \def\b{\beta} |
| + | \def\p{\partial}$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783026.png" /> assign to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783027.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783028.png" />-jet of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783029.png" />, i.e. the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783030.png" />-tuple of continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783031.png" /> restricted to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783032.png" />; cf. also [[Jet|Jet]]. For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783034.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783035.png" /> be the polynomial
| + | A deep theorem from the real analysis, showing which data are required to extent a real-valued function from a compact subset in $\R^n$ to its open neighborhood in a $C^m$-smooth or $C^\infty$-smooth way. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783036.png" /></td> </tr></table>
| + | ==Jets and terminology== |
| + | If $U$ is an open subset in $\R^n$ and $f:U\to\R$ is a smooth function, then one can define its partial derivatives to any order not exceeding the smoothness: in the [[multi-index notation]] the collection of all derivatives |
| + | $$ |
| + | f^{(\a)}=\p^\a f\in C^{m-|\a|}(U),\qquad 0\le |\a|\le m,\ f^{(0)}=f, |
| + | $$ |
| + | is called an $m$-[[jet]] of the function $f\in C^m(U)$. |
| | | |
− | and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783037.png" /> be the element
| + | The different derivatives are related by the obvious formulas $\p^\b f^{(a)}=f^{\a+\b)}$ as long as $|\a|+|\b|\le m$. This allows to compare them using the Taylor expansion. For each point $a\in U$ and each derivative $f^{(\a)}$ one can form the Taylor polynomial of order $r\le m-|\a|$ centered at $a$, |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783038.png" /></td> </tr></table>
| + | \Big(T_a^r f^{(\a)}\Big)(x)=\sum_{|\b|\le r}\frac1{\b!}\Big(\p^\b f^{(\alpha)}(a)\Big)\cdot(x-a)^{\b}= |
− | | + | \sum_{|\b|\le r}\frac1{\b!}f^{(\a+\b)}(a)\cdot(x-a)^{\b}.\tag T |
− | of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783039.png" /> with components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783040.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783041.png" /> of functions differentiable in the sense of Whitney on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783042.png" /> consists of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783043.png" /> such that
| + | $$ |
− | | + | The difference between $f^{(\a)}(x)$ and the value provided by the Taylor polynomial $\Big(T_a^r f^{(\a)}\Big)(x)$ should be small together with $|x-a|$: |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783044.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$ |
− | | + | \Big|f^{(\a)}(x)-\Big(T_a^r f^{(\a)}\Big)(x)\Big|=o\Big(|x-a|^{r-|\a|}\Big). |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783045.png" /></td> </tr></table>
| + | $$ |
− | | + | These asymptotic conditions are necessary for the functions $f^{(\a)}$ to be partial derivatives of a smooth function. |
− | Of course, the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783046.png" /> are not really functions, but that does no harm. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783047.png" /> is a point, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783048.png" />. The Whitney extension theorem now states that there exists a linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783049.png" /> such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783050.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783051.png" />,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783052.png" /></td> </tr></table>
| |
− | | |
− | and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783053.png" /> is smooth on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783054.png" />.
| |
− | | |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783055.png" /> it follows that for every power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783056.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783057.png" /> (in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783058.png" />) there is a smooth function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783059.png" /> whose Taylor series at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783060.png" /> is precisely this power series.
| |
− | | |
− | This results also (by induction on the number of variables) from the Borel extension lemma. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783061.png" /> be a series of smooth functions defined on a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783062.png" />. Then there is a smooth function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783063.png" /> defined on a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783064.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783065.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783066.png" />.
| |
| | | |
| + | ==Whitney data== |
| + | Let $K\Subseteq U$ be a compact subset of $U$. The ''Whitney data'' (or "smooth function in the sense of Whitney") is the collection of continuous functions |
| + | $$ |
| + | \mathbf f=\{f^\a:K\to\R,\ |\a|\le m\}, |
| + | $$ |
| + | which satisfies the compatibility condition that were established above for the partial derivatives: for each multiindex $\a$ and natural $r$ the differences |
| + | $$ |
| + | R_m^\a(a,x)=f^\a(x)-\sum_{|\b|\le m-|\a|}\frac1{\b!}f^{\a+\b}(a)\cdot(x-a)^\b,\qquad x,a\in K, |
| + | $$ |
| + | should be small as specified, |
| + | $$ |
| + | |R^\a_m(a,x)|=o\Big(|x-a|^{r-|\a|}\Big),\qquad x,a\in K,\ |x-a|\to0. |
| + | $$ |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Whitney, "Analytic extensions of differentiable functions defined in closed sets" ''Trans. Amer. Math. Soc.'' , '''36''' (1934) pp. 63–89 {{MR|1501735}} {{ZBL|0008.24902}} {{ZBL|60.0217.01}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Malgrange, "Ideals of differentiable functions" , Oxford Univ. Press (1966) pp. Chapt. I {{MR|2065138}} {{MR|0212575}} {{ZBL|0177.17902}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.C. Tougeron, "Ideaux de fonction différentiables" , Springer (1972) pp. Chapt. IV {{MR|0440598}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) pp. 108ff {{MR|0341518}} {{ZBL|0294.58004}} </TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Whitney, "Analytic extensions of differentiable functions defined in closed sets" ''Trans. Amer. Math. Soc.'' , '''36''' (1934) pp. 63–89 {{MR|1501735}} {{ZBL|0008.24902}} {{ZBL|60.0217.01}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Malgrange, "Ideals of differentiable functions" , Oxford Univ. Press (1966) pp. Chapt. I {{MR|2065138}} {{MR|0212575}} {{ZBL|0177.17902}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.C. Tougeron, "Ideaux de fonction différentiables" , Springer (1972) pp. Chapt. IV {{MR|0440598}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) pp. 108ff {{MR|0341518}} {{ZBL|0294.58004}} </TD></TR></table> |
$\def\a{\alpha}
\def\b{\beta}
\def\p{\partial}$
A deep theorem from the real analysis, showing which data are required to extent a real-valued function from a compact subset in $\R^n$ to its open neighborhood in a $C^m$-smooth or $C^\infty$-smooth way.
Jets and terminology
If $U$ is an open subset in $\R^n$ and $f:U\to\R$ is a smooth function, then one can define its partial derivatives to any order not exceeding the smoothness: in the multi-index notation the collection of all derivatives
$$
f^{(\a)}=\p^\a f\in C^{m-|\a|}(U),\qquad 0\le |\a|\le m,\ f^{(0)}=f,
$$
is called an $m$-jet of the function $f\in C^m(U)$.
The different derivatives are related by the obvious formulas $\p^\b f^{(a)}=f^{\a+\b)}$ as long as $|\a|+|\b|\le m$. This allows to compare them using the Taylor expansion. For each point $a\in U$ and each derivative $f^{(\a)}$ one can form the Taylor polynomial of order $r\le m-|\a|$ centered at $a$,
$$
\Big(T_a^r f^{(\a)}\Big)(x)=\sum_{|\b|\le r}\frac1{\b!}\Big(\p^\b f^{(\alpha)}(a)\Big)\cdot(x-a)^{\b}=
\sum_{|\b|\le r}\frac1{\b!}f^{(\a+\b)}(a)\cdot(x-a)^{\b}.\tag T
$$
The difference between $f^{(\a)}(x)$ and the value provided by the Taylor polynomial $\Big(T_a^r f^{(\a)}\Big)(x)$ should be small together with $|x-a|$:
$$
\Big|f^{(\a)}(x)-\Big(T_a^r f^{(\a)}\Big)(x)\Big|=o\Big(|x-a|^{r-|\a|}\Big).
$$
These asymptotic conditions are necessary for the functions $f^{(\a)}$ to be partial derivatives of a smooth function.
Whitney data
Let $K\Subseteq U$ be a compact subset of $U$. The Whitney data (or "smooth function in the sense of Whitney") is the collection of continuous functions
$$
\mathbf f=\{f^\a:K\to\R,\ |\a|\le m\},
$$
which satisfies the compatibility condition that were established above for the partial derivatives: for each multiindex $\a$ and natural $r$ the differences
$$
R_m^\a(a,x)=f^\a(x)-\sum_{|\b|\le m-|\a|}\frac1{\b!}f^{\a+\b}(a)\cdot(x-a)^\b,\qquad x,a\in K,
$$
should be small as specified,
$$
|R^\a_m(a,x)|=o\Big(|x-a|^{r-|\a|}\Big),\qquad x,a\in K,\ |x-a|\to0.
$$
References
[a1] | H. Whitney, "Analytic extensions of differentiable functions defined in closed sets" Trans. Amer. Math. Soc. , 36 (1934) pp. 63–89 MR1501735 Zbl 0008.24902 Zbl 60.0217.01 |
[a2] | B. Malgrange, "Ideals of differentiable functions" , Oxford Univ. Press (1966) pp. Chapt. I MR2065138 MR0212575 Zbl 0177.17902 |
[a3] | J.C. Tougeron, "Ideaux de fonction différentiables" , Springer (1972) pp. Chapt. IV MR0440598 |
[a4] | M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) pp. 108ff MR0341518 Zbl 0294.58004 |