|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | s0910601.png |
| + | $#A+1 = 35 n = 0 |
| + | $#C+1 = 35 : ~/encyclopedia/old_files/data/S091/S.0901060 Subvariety, involutive |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''(in symplectic geometry)'' | | ''(in symplectic geometry)'' |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910601.png" /> be a vector space of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910602.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910603.png" /> a non-degenerate alternating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910604.png" />-form on it. Given a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910605.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910606.png" />, one defines (as usual) | + | Let $ V $ |
| + | be a vector space of dimension $ 2n $ |
| + | and $ \omega $ |
| + | a non-degenerate alternating $ 2 $- |
| + | form on it. Given a subspace $ W $ |
| + | of $ V $, |
| + | one defines (as usual) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910607.png" /></td> </tr></table>
| + | $$ |
| + | W ^ \perp = \{ {x \in V } : {\omega ( x, w)= 0 \textrm{ |
| + | for all } w \in W } \} |
| + | . |
| + | $$ |
| | | |
− | One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910608.png" /> is an isotropic subspace if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s0910609.png" />, that it is an involutive subspace (or co-isotropic subspace) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106010.png" />, and that it is a Lagrangian subspace if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106011.png" />. Note that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106012.png" /> to be involutive it is necessary that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106013.png" />. | + | One says that $ W $ |
| + | is an isotropic subspace if $ W \subset W ^ \perp $, |
| + | that it is an involutive subspace (or co-isotropic subspace) if $ W \supset W ^ \perp $, |
| + | and that it is a Lagrangian subspace if $ W = W ^ \perp $. |
| + | Note that for $ W $ |
| + | to be involutive it is necessary that $ \mathop{\rm dim} ( W) \geq n $. |
| | | |
− | Now, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106014.png" /> be a subvariety (possibly with singularities; or, more generally, an analytic subset) of a [[Symplectic manifold|symplectic manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106015.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106016.png" /> be the set of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106017.png" /> which have a neighbourhood in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106018.png" /> that is free of singular points. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106019.png" /> is an involutive subvariety of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106020.png" /> if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106021.png" /> the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106023.png" /> is involutive. The notions of an isotropic subvariety and a Lagrangian subvariety are defined analogously. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106024.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106025.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106026.png" /> is involutive if and only if for every two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106027.png" />-functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106029.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106030.png" /> which vanish on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106031.png" /> the Poisson bracket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106032.png" /> (defined by the symplectic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106033.png" />-form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106034.png" />) also vanishes on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091060/s09106035.png" />. | + | Now, let $ V $ |
| + | be a subvariety (possibly with singularities; or, more generally, an analytic subset) of a [[Symplectic manifold|symplectic manifold]] $ X $. |
| + | Let $ \mathop{\rm Reg} ( V) $ |
| + | be the set of points of $ V $ |
| + | which have a neighbourhood in $ V $ |
| + | that is free of singular points. Then $ V $ |
| + | is an involutive subvariety of $ X $ |
| + | if for all $ p \in \mathop{\rm Reg} ( V) $ |
| + | the subspace $ V _ {p} $ |
| + | of $ X _ {p} $ |
| + | is involutive. The notions of an isotropic subvariety and a Lagrangian subvariety are defined analogously. If $ \mathop{\rm Reg} ( V) $ |
| + | is dense in $ V $, |
| + | then $ V $ |
| + | is involutive if and only if for every two $ C ^ {1} $- |
| + | functions $ f $, |
| + | $ g $ |
| + | on $ X $ |
| + | which vanish on $ V $ |
| + | the Poisson bracket $ \{ f, g \} $( |
| + | defined by the symplectic $ 2 $- |
| + | form on $ X $) |
| + | also vanishes on $ V $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Libermann, C.-M. Marle, "Symplectic geometry and analytical mechanics" , Reidel (1987) (Translated from French) {{MR|0882548}} {{ZBL|0643.53002}} </TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Libermann, C.-M. Marle, "Symplectic geometry and analytical mechanics" , Reidel (1987) (Translated from French) {{MR|0882548}} {{ZBL|0643.53002}} </TD></TR></table> |
(in symplectic geometry)
Let $ V $
be a vector space of dimension $ 2n $
and $ \omega $
a non-degenerate alternating $ 2 $-
form on it. Given a subspace $ W $
of $ V $,
one defines (as usual)
$$
W ^ \perp = \{ {x \in V } : {\omega ( x, w)= 0 \textrm{
for all } w \in W } \}
.
$$
One says that $ W $
is an isotropic subspace if $ W \subset W ^ \perp $,
that it is an involutive subspace (or co-isotropic subspace) if $ W \supset W ^ \perp $,
and that it is a Lagrangian subspace if $ W = W ^ \perp $.
Note that for $ W $
to be involutive it is necessary that $ \mathop{\rm dim} ( W) \geq n $.
Now, let $ V $
be a subvariety (possibly with singularities; or, more generally, an analytic subset) of a symplectic manifold $ X $.
Let $ \mathop{\rm Reg} ( V) $
be the set of points of $ V $
which have a neighbourhood in $ V $
that is free of singular points. Then $ V $
is an involutive subvariety of $ X $
if for all $ p \in \mathop{\rm Reg} ( V) $
the subspace $ V _ {p} $
of $ X _ {p} $
is involutive. The notions of an isotropic subvariety and a Lagrangian subvariety are defined analogously. If $ \mathop{\rm Reg} ( V) $
is dense in $ V $,
then $ V $
is involutive if and only if for every two $ C ^ {1} $-
functions $ f $,
$ g $
on $ X $
which vanish on $ V $
the Poisson bracket $ \{ f, g \} $(
defined by the symplectic $ 2 $-
form on $ X $)
also vanishes on $ V $.
References
[a1] | P. Libermann, C.-M. Marle, "Symplectic geometry and analytical mechanics" , Reidel (1987) (Translated from French) MR0882548 Zbl 0643.53002 |