Difference between revisions of "Removable set"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0812301.png | ||
+ | $#A+1 = 56 n = 0 | ||
+ | $#C+1 = 56 : ~/encyclopedia/old_files/data/R081/R.0801230 Removable set | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ E $ | |
+ | of points of the complex plane $ \mathbf C $ | ||
+ | for a certain class $ K $ | ||
+ | of functions analytic in a domain $ G \subset \mathbf C $'' | ||
− | A | + | A compact set $ E \subset G $ |
+ | such that any function $ f ( z) $ | ||
+ | of class $ K $ | ||
+ | in $ G \setminus E $ | ||
+ | can be continued as a function of class $ K $ | ||
+ | to the whole domain $ G $. | ||
+ | The situation may be described in other words by saying that "the set E is set, removable for a class of functionsremovable for the class K" or that "E is a null-set for the class K" , briefly: $ E \in N ( K , G ) $. | ||
+ | It is assumed that the complement $ G \setminus E $ | ||
+ | is a domain and that the class $ K $ | ||
+ | is defined for any domain. | ||
− | + | According to another definition, a set $ E $ | |
+ | is removable for a class $ K $, | ||
+ | $ E \in N ( K) $, | ||
+ | if the fact that $ f ( z) $ | ||
+ | is a function of class $ K $ | ||
+ | in the complement $ \mathbf C \setminus E $ | ||
+ | implies that $ f ( z) = \textrm{ const } $. | ||
+ | Here the membership relations $ E \in N ( K , G ) $ | ||
+ | and $ E \in N ( K ) $ | ||
+ | are generally speaking not equivalent. | ||
− | The problem of removable sets can also be posed for harmonic, subharmonic and other functions. E.g., let | + | A first result on removable sets was the classical Cauchy–Riemann theorem on removable singularities: If a function $ f ( z) $ |
+ | is analytic and bounded in a punctured neighbourhood $ V ( a) = \{ {z } : {0 < | z - a | < \delta } \} $ | ||
+ | of a point $ a \in \mathbf C $, | ||
+ | then it can be continued analytically to $ a $. | ||
+ | A wider statement of the question (Painlevé's problem) is due to P. Painlevé: To find necessary and sufficient conditions on a set $ E $ | ||
+ | in order that $ E \in N ( A B , G ) $, | ||
+ | where $ K = A B $ | ||
+ | is the class of all bounded analytic functions (cf. [[#References|[1]]]). Painlevé himself found a sufficient condition: $ E $ | ||
+ | must have linear Hausdorff measure zero. Necessary and sufficient conditions for Painlevé's problem were obtained by L.V. Ahlfors (cf. [[#References|[2]]]): $ E \in N ( A B , G ) $ | ||
+ | if and only if $ E $ | ||
+ | has zero [[Analytic capacity|analytic capacity]]. There exists an example of a set $ E $ | ||
+ | of positive length but zero analytic capacity. On removable sets for different classes of analytic functions of one complex variable and related unsolved problems see [[#References|[3]]], [[#References|[4]]], [[#References|[6]]], [[#References|[9]]]. | ||
+ | |||
+ | In the case of analytic functions $ f ( z) $ | ||
+ | of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, | ||
+ | $ n \geq 2 $, | ||
+ | the statement of the problem on removable sets is changed by virtue of the classical Osgood–Brown theorem: If $ f ( z) $ | ||
+ | is a regular analytic function in a domain $ G \subset \mathbf C ^ {n} $, | ||
+ | except possibly on a compact set $ E \subset G $ | ||
+ | for which the complement $ G \setminus E $ | ||
+ | is connected, then $ f ( z) $ | ||
+ | can be continued analytically to the whole domain $ G $. | ||
+ | For other theorems on removable sets for $ n \geq 2 $, | ||
+ | as well as connections with the concept of a [[Domain of holomorphy|domain of holomorphy]], see e.g. [[#References|[7]]], [[#References|[10]]]. | ||
+ | |||
+ | The problem of removable sets can also be posed for harmonic, subharmonic and other functions. E.g., let $ G $ | ||
+ | be a domain in Euclidean space $ \mathbf R ^ {n} $, | ||
+ | $ n \geq 3 $, | ||
+ | let $ E $ | ||
+ | be compact, $ E \subset G $, | ||
+ | let $ H B $ | ||
+ | be the class of bounded harmonic functions, and let $ H D $ | ||
+ | be the class of harmonic functions with finite Dirichlet integral. Then the membership relations $ E \in N ( H B , G ) $ | ||
+ | and $ E \in N ( H D , G ) $ | ||
+ | are equivalent and are valid if and only if the [[Capacity|capacity]] of $ E $ | ||
+ | is zero (cf. [[#References|[5]]], [[#References|[8]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Zoretti, "Leçons sur la prolongement analytique" , Gauthier-Villars (1911)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Ahlfors, "Bounded analytic functions" ''Duke Math. J.'' , '''14''' : 1 (1947) pp. 1–11 {{MR|0021108}} {{ZBL|0030.03001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Nohiro, "Cluster sets" , Springer (1960)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.Ya. Khavinson, "Analytic functions of bounded type" ''Itogi Nauk. Mat. Anal. 1963'' (1965) pp. 5–80 (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> L. Carleson, "Selected problems on exceptional sets" , v. Nostrand (1967) {{MR|0225986}} {{ZBL|0189.10903}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.S. Mel'nikov, S.O. Sinanyan, "Aspects of approximation theory for functions of one complex variable" ''J. Soviet Math.'' , '''5''' : 5 (1976) pp. 688–752 ''Itogi Nauk. i Tekhn. Sovremen. Probl. Mat.'' , '''4''' (1975) pp. 143–250 {{MR|}} {{ZBL|0375.30014}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1985) (In Russian) {{MR|}} {{ZBL|0578.32001}} {{ZBL|0574.30001}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> W.K. Hayman, P.B. Kennedy, "Subharmonic functions" , '''1''' , Acad. Press (1976) {{MR|0460672}} {{MR|0419791}} {{MR|0412442}} {{MR|0442324}} {{ZBL|0419.31001}} {{ZBL|0339.31003}} {{ZBL|0328.33011}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> E.P. Dolzhenko, "Elimination of singularities of analytic functions" ''Uspekhi Mat. Nauk'' , '''18''' : 4 (1963) pp. 135–142 (In Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> L.J. Riihentaus, "Removable singularities of analytic functions of several complex variables" ''Math. Z.'' , '''158''' (1978) pp. 45–54 {{MR|0484286}} {{ZBL|0351.32014}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Zoretti, "Leçons sur la prolongement analytique" , Gauthier-Villars (1911)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Ahlfors, "Bounded analytic functions" ''Duke Math. J.'' , '''14''' : 1 (1947) pp. 1–11 {{MR|0021108}} {{ZBL|0030.03001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Nohiro, "Cluster sets" , Springer (1960)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.Ya. Khavinson, "Analytic functions of bounded type" ''Itogi Nauk. Mat. Anal. 1963'' (1965) pp. 5–80 (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> L. Carleson, "Selected problems on exceptional sets" , v. Nostrand (1967) {{MR|0225986}} {{ZBL|0189.10903}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.S. Mel'nikov, S.O. Sinanyan, "Aspects of approximation theory for functions of one complex variable" ''J. Soviet Math.'' , '''5''' : 5 (1976) pp. 688–752 ''Itogi Nauk. i Tekhn. Sovremen. Probl. Mat.'' , '''4''' (1975) pp. 143–250 {{MR|}} {{ZBL|0375.30014}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''2''' , Moscow (1985) (In Russian) {{MR|}} {{ZBL|0578.32001}} {{ZBL|0574.30001}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> W.K. Hayman, P.B. Kennedy, "Subharmonic functions" , '''1''' , Acad. Press (1976) {{MR|0460672}} {{MR|0419791}} {{MR|0412442}} {{MR|0442324}} {{ZBL|0419.31001}} {{ZBL|0339.31003}} {{ZBL|0328.33011}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> E.P. Dolzhenko, "Elimination of singularities of analytic functions" ''Uspekhi Mat. Nauk'' , '''18''' : 4 (1963) pp. 135–142 (In Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> L.J. Riihentaus, "Removable singularities of analytic functions of several complex variables" ''Math. Z.'' , '''158''' (1978) pp. 45–54 {{MR|0484286}} {{ZBL|0351.32014}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 21: | Line 83: | ||
See also [[Analytic continuation|Analytic continuation]]; [[Analytic set|Analytic set]]; [[Removable singular point|Removable singular point]]. | See also [[Analytic continuation|Analytic continuation]]; [[Analytic set|Analytic set]]; [[Removable singular point|Removable singular point]]. | ||
− | For quite general continuation results see [[#References|[a2]]]; Riemann's theorem has an analogue in | + | For quite general continuation results see [[#References|[a2]]]; Riemann's theorem has an analogue in $ \mathbf C ^ {n} $: |
+ | Bounded analytic functions extend analytically across subvarieties of codimension $ \geq 1 $, | ||
+ | while all analytic functions can be analytically continued across subvarieties of codimension $ \geq 2 $. | ||
+ | See [[#References|[a1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) pp. Chapt. 1, Section G {{MR|0180696}} {{ZBL|0141.08601}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Harvey, J. Polking, "Removable singularities of solutions of linear partial differential equations" ''Acta Math.'' , '''125''' (1970) pp. 39–55 {{MR|0279461}} {{ZBL|0214.10001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.B. Garnett, "Analytic capacity and measure" , ''Lect. notes in math.'' , '''297''' , Springer (1972) {{MR|0454006}} {{ZBL|0253.30014}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.M. Chirka, "Complex analytic sets" , Kluwer (1989) (Translated from Russian) {{MR|1111477}} {{ZBL|0683.32002}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) pp. Chapt. 1, Section G {{MR|0180696}} {{ZBL|0141.08601}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Harvey, J. Polking, "Removable singularities of solutions of linear partial differential equations" ''Acta Math.'' , '''125''' (1970) pp. 39–55 {{MR|0279461}} {{ZBL|0214.10001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.B. Garnett, "Analytic capacity and measure" , ''Lect. notes in math.'' , '''297''' , Springer (1972) {{MR|0454006}} {{ZBL|0253.30014}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.M. Chirka, "Complex analytic sets" , Kluwer (1989) (Translated from Russian) {{MR|1111477}} {{ZBL|0683.32002}} </TD></TR></table> |
Latest revision as of 08:10, 6 June 2020
$ E $
of points of the complex plane $ \mathbf C $
for a certain class $ K $
of functions analytic in a domain $ G \subset \mathbf C $
A compact set $ E \subset G $ such that any function $ f ( z) $ of class $ K $ in $ G \setminus E $ can be continued as a function of class $ K $ to the whole domain $ G $. The situation may be described in other words by saying that "the set E is set, removable for a class of functionsremovable for the class K" or that "E is a null-set for the class K" , briefly: $ E \in N ( K , G ) $. It is assumed that the complement $ G \setminus E $ is a domain and that the class $ K $ is defined for any domain.
According to another definition, a set $ E $ is removable for a class $ K $, $ E \in N ( K) $, if the fact that $ f ( z) $ is a function of class $ K $ in the complement $ \mathbf C \setminus E $ implies that $ f ( z) = \textrm{ const } $. Here the membership relations $ E \in N ( K , G ) $ and $ E \in N ( K ) $ are generally speaking not equivalent.
A first result on removable sets was the classical Cauchy–Riemann theorem on removable singularities: If a function $ f ( z) $ is analytic and bounded in a punctured neighbourhood $ V ( a) = \{ {z } : {0 < | z - a | < \delta } \} $ of a point $ a \in \mathbf C $, then it can be continued analytically to $ a $. A wider statement of the question (Painlevé's problem) is due to P. Painlevé: To find necessary and sufficient conditions on a set $ E $ in order that $ E \in N ( A B , G ) $, where $ K = A B $ is the class of all bounded analytic functions (cf. [1]). Painlevé himself found a sufficient condition: $ E $ must have linear Hausdorff measure zero. Necessary and sufficient conditions for Painlevé's problem were obtained by L.V. Ahlfors (cf. [2]): $ E \in N ( A B , G ) $ if and only if $ E $ has zero analytic capacity. There exists an example of a set $ E $ of positive length but zero analytic capacity. On removable sets for different classes of analytic functions of one complex variable and related unsolved problems see [3], [4], [6], [9].
In the case of analytic functions $ f ( z) $ of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, $ n \geq 2 $, the statement of the problem on removable sets is changed by virtue of the classical Osgood–Brown theorem: If $ f ( z) $ is a regular analytic function in a domain $ G \subset \mathbf C ^ {n} $, except possibly on a compact set $ E \subset G $ for which the complement $ G \setminus E $ is connected, then $ f ( z) $ can be continued analytically to the whole domain $ G $. For other theorems on removable sets for $ n \geq 2 $, as well as connections with the concept of a domain of holomorphy, see e.g. [7], [10].
The problem of removable sets can also be posed for harmonic, subharmonic and other functions. E.g., let $ G $ be a domain in Euclidean space $ \mathbf R ^ {n} $, $ n \geq 3 $, let $ E $ be compact, $ E \subset G $, let $ H B $ be the class of bounded harmonic functions, and let $ H D $ be the class of harmonic functions with finite Dirichlet integral. Then the membership relations $ E \in N ( H B , G ) $ and $ E \in N ( H D , G ) $ are equivalent and are valid if and only if the capacity of $ E $ is zero (cf. [5], [8]).
References
[1] | L. Zoretti, "Leçons sur la prolongement analytique" , Gauthier-Villars (1911) |
[2] | L.V. Ahlfors, "Bounded analytic functions" Duke Math. J. , 14 : 1 (1947) pp. 1–11 MR0021108 Zbl 0030.03001 |
[3] | K. Nohiro, "Cluster sets" , Springer (1960) |
[4] | S.Ya. Khavinson, "Analytic functions of bounded type" Itogi Nauk. Mat. Anal. 1963 (1965) pp. 5–80 (In Russian) |
[5] | L. Carleson, "Selected problems on exceptional sets" , v. Nostrand (1967) MR0225986 Zbl 0189.10903 |
[6] | M.S. Mel'nikov, S.O. Sinanyan, "Aspects of approximation theory for functions of one complex variable" J. Soviet Math. , 5 : 5 (1976) pp. 688–752 Itogi Nauk. i Tekhn. Sovremen. Probl. Mat. , 4 (1975) pp. 143–250 Zbl 0375.30014 |
[7] | B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1985) (In Russian) Zbl 0578.32001 Zbl 0574.30001 |
[8] | W.K. Hayman, P.B. Kennedy, "Subharmonic functions" , 1 , Acad. Press (1976) MR0460672 MR0419791 MR0412442 MR0442324 Zbl 0419.31001 Zbl 0339.31003 Zbl 0328.33011 |
[9] | E.P. Dolzhenko, "Elimination of singularities of analytic functions" Uspekhi Mat. Nauk , 18 : 4 (1963) pp. 135–142 (In Russian) |
[10] | L.J. Riihentaus, "Removable singularities of analytic functions of several complex variables" Math. Z. , 158 (1978) pp. 45–54 MR0484286 Zbl 0351.32014 |
Comments
The Osgood–Brown theorem is also called Hartogs' theorem, cf. Hartogs theorem.
See also Analytic continuation; Analytic set; Removable singular point.
For quite general continuation results see [a2]; Riemann's theorem has an analogue in $ \mathbf C ^ {n} $: Bounded analytic functions extend analytically across subvarieties of codimension $ \geq 1 $, while all analytic functions can be analytically continued across subvarieties of codimension $ \geq 2 $. See [a1].
References
[a1] | R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) pp. Chapt. 1, Section G MR0180696 Zbl 0141.08601 |
[a2] | R. Harvey, J. Polking, "Removable singularities of solutions of linear partial differential equations" Acta Math. , 125 (1970) pp. 39–55 MR0279461 Zbl 0214.10001 |
[a3] | J.B. Garnett, "Analytic capacity and measure" , Lect. notes in math. , 297 , Springer (1972) MR0454006 Zbl 0253.30014 |
[a4] | E.M. Chirka, "Complex analytic sets" , Kluwer (1989) (Translated from Russian) MR1111477 Zbl 0683.32002 |
Removable set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Removable_set&oldid=24552