Namespaces
Variants
Actions

Difference between revisions of "Legendre manifold"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
Line 1: Line 1:
An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580401.png" />-dimensional smooth submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580402.png" /> of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580403.png" />-dimensional contact manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580404.png" /> (that is, a manifold endowed with a [[Pfaffian form|Pfaffian form]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580405.png" /> such that the exterior product of it with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580406.png" />-th exterior power of its exterior differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580407.png" /> at all points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580408.png" />), such that the Pfaffian form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l0580409.png" /> that specifies the contact structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804010.png" /> vanishes identically on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804011.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804012.png" /> for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804013.png" /> that is tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804014.png" /> at some point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804015.png" />). In the important special case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804016.png" /> with coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804019.png" /> is situated so that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804020.png" /> can be taken as coordinates on it, the condition that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804021.png" /> is a Legendre manifold means that it is specified by equations of the form
+
<!--
 +
l0580401.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/L058/L.0508040 Legendre manifold
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804022.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804023.png" /> can also be taken as coordinates on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804024.png" />, then the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058040/l05804026.png" /> are connected by a Legendre transformation (cf. [[Legendre transform|Legendre transform]]); if this cannot be done in a neighbourhood of some point, then the Legendre transformation has a singularity at this point.
+
An  $  n $-
 +
dimensional smooth submanifold  $  L  ^ {n} $
 +
of a  $  ( 2n + 1) $-
 +
dimensional contact manifold  $  M  ^ {2n+} 1 $(
 +
that is, a manifold endowed with a [[Pfaffian form|Pfaffian form]]  $  \alpha $
 +
such that the exterior product of it with the  $  n $-
 +
th exterior power of its exterior differential  $  \alpha \wedge ( d \alpha )  ^ {n} \neq 0 $
 +
at all points of  $  M  ^ {2n+} 1 $),
 +
such that the Pfaffian form  $  \alpha $
 +
that specifies the contact structure on  $  M  ^ {2n+} 1 $
 +
vanishes identically on  $  L  ^ {n} $(
 +
that is,  $  \alpha ( X) = 0 $
 +
for any vector  $  X $
 +
that is tangent to  $  L  ^ {n} $
 +
at some point of  $  L  ^ {n} $).
 +
In the important special case when  $  M  ^ {2n+} 1 = \mathbf R  ^ {2n+} 1 $
 +
with coordinates  $  ( p _ {1} \dots p _ {n} , q _ {1} \dots q _ {n} , r ) $,
 +
$  \alpha = \sum _ {i=} 1  ^ {n} p _ {i}  dq _ {i} - dr $
 +
and  $  L  ^ {n} $
 +
is situated so that the  $  q _ {i} $
 +
can be taken as coordinates on it, the condition that  $  L  ^ {n} $
 +
is a Legendre manifold means that it is specified by equations of the form
 +
 
 +
$$
 +
= f ( q _ {1} \dots q _ {n} ) ,\  p _ {1}  =
 +
\frac{\partial  f }{
 +
\partial  q _ {1} }
 +
\dots p _ {n}  =
 +
\frac{\partial  f }{\partial  q _ {n} }
 +
.
 +
$$
 +
 
 +
If the  $  p _ {i} $
 +
can also be taken as coordinates on  $  L  ^ {n} $,  
 +
then the coordinates $  q _ {i} $
 +
and $  p _ {i} $
 +
are connected by a Legendre transformation (cf. [[Legendre transform|Legendre transform]]); if this cannot be done in a neighbourhood of some point, then the Legendre transformation has a singularity at this point.
  
 
Examples of Legendre manifolds occurred long ago in various questions of analysis and geometry, but the idea of the Legendre manifold itself was introduced comparatively recently by analogy with a [[Lagrangian manifold|Lagrangian manifold]].
 
Examples of Legendre manifolds occurred long ago in various questions of analysis and geometry, but the idea of the Legendre manifold itself was introduced comparatively recently by analogy with a [[Lagrangian manifold|Lagrangian manifold]].
Line 9: Line 53:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian) {{MR|}} {{ZBL|0692.70003}} {{ZBL|0572.70001}} {{ZBL|0647.70001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. [V.I. Arnol'd] Arnold, A.B. [A.B. Givent'al] Giventhal, "Symplectic geometry" , ''Dynamical Systems'' , '''IV''' , Springer (1989) pp. Chapt. 4 (Translated from Russian) {{MR|1866631}} {{MR|1768639}} {{MR|1356438}} {{MR|0842908}} {{MR|0820079}} {{ZBL|1048.00010}} {{ZBL|1021.53053}} {{ZBL|0973.53501}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian) {{MR|}} {{ZBL|0692.70003}} {{ZBL|0572.70001}} {{ZBL|0647.70001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. [V.I. Arnol'd] Arnold, A.B. [A.B. Givent'al] Giventhal, "Symplectic geometry" , ''Dynamical Systems'' , '''IV''' , Springer (1989) pp. Chapt. 4 (Translated from Russian) {{MR|1866631}} {{MR|1768639}} {{MR|1356438}} {{MR|0842908}} {{MR|0820079}} {{ZBL|1048.00010}} {{ZBL|1021.53053}} {{ZBL|0973.53501}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 22:16, 5 June 2020


An $ n $- dimensional smooth submanifold $ L ^ {n} $ of a $ ( 2n + 1) $- dimensional contact manifold $ M ^ {2n+} 1 $( that is, a manifold endowed with a Pfaffian form $ \alpha $ such that the exterior product of it with the $ n $- th exterior power of its exterior differential $ \alpha \wedge ( d \alpha ) ^ {n} \neq 0 $ at all points of $ M ^ {2n+} 1 $), such that the Pfaffian form $ \alpha $ that specifies the contact structure on $ M ^ {2n+} 1 $ vanishes identically on $ L ^ {n} $( that is, $ \alpha ( X) = 0 $ for any vector $ X $ that is tangent to $ L ^ {n} $ at some point of $ L ^ {n} $). In the important special case when $ M ^ {2n+} 1 = \mathbf R ^ {2n+} 1 $ with coordinates $ ( p _ {1} \dots p _ {n} , q _ {1} \dots q _ {n} , r ) $, $ \alpha = \sum _ {i=} 1 ^ {n} p _ {i} dq _ {i} - dr $ and $ L ^ {n} $ is situated so that the $ q _ {i} $ can be taken as coordinates on it, the condition that $ L ^ {n} $ is a Legendre manifold means that it is specified by equations of the form

$$ r = f ( q _ {1} \dots q _ {n} ) ,\ p _ {1} = \frac{\partial f }{ \partial q _ {1} } \dots p _ {n} = \frac{\partial f }{\partial q _ {n} } . $$

If the $ p _ {i} $ can also be taken as coordinates on $ L ^ {n} $, then the coordinates $ q _ {i} $ and $ p _ {i} $ are connected by a Legendre transformation (cf. Legendre transform); if this cannot be done in a neighbourhood of some point, then the Legendre transformation has a singularity at this point.

Examples of Legendre manifolds occurred long ago in various questions of analysis and geometry, but the idea of the Legendre manifold itself was introduced comparatively recently by analogy with a Lagrangian manifold.

References

[1] V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian) Zbl 0692.70003 Zbl 0572.70001 Zbl 0647.70001
[2] V.I. [V.I. Arnol'd] Arnold, A.B. [A.B. Givent'al] Giventhal, "Symplectic geometry" , Dynamical Systems , IV , Springer (1989) pp. Chapt. 4 (Translated from Russian) MR1866631 MR1768639 MR1356438 MR0842908 MR0820079 Zbl 1048.00010 Zbl 1021.53053 Zbl 0973.53501

Comments

The generalization of solutions of first-order partial differential equations to Legendre manifolds is due to S. Lie, see [a1], §23, 26, although Lie did not give a name to it.

References

[a1] V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , 1 , Birkhäuser (1985) pp. Chapt. 20 (Translated from Russian) MR777682 Zbl 0554.58001
[a2] S. Lie, F. Engel, "Theorie der Transformationsgruppen" , II , Leipzig (1930) MR1510035 Zbl 50.0002.01 Zbl 53.0026.07 Zbl 25.0626.01 Zbl 25.0623.01 Zbl 23.0376.01 Zbl 22.0372.01 Zbl 23.0364.01 Zbl 20.0368.01 Zbl 21.0356.02 Zbl 16.0326.01 Zbl 12.0292.01 Zbl 11.0258.02 Zbl 10.0260.01 Zbl 10.0258.01
How to Cite This Entry:
Legendre manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Legendre_manifold&oldid=24491
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article