Namespaces
Variants
Actions

Difference between revisions of "Double plane"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
Line 1: Line 1:
An algebraic surface representing the two-dimensional analogue of a [[Hyper-elliptic curve|hyper-elliptic curve]]. A non-singular algebraic projective surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339401.png" /> over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339402.png" /> is said to be a double plane if its field of rational functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339403.png" /> is a quadratic extension of the field of rational functions in two variables. If the characteristic of the field is distinct from two (in what follows, this condition is assumed to hold), any double plane is birationally isomorphic to the affine surface given in three-dimensional affine space by an equation
+
<!--
 +
d0339401.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/D033/D.0303940 Double plane
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339404.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Surfaces of this type are sometimes also referred to as double planes. For each double plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339405.png" /> there exists a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339406.png" /> into the projective plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339407.png" /> which splits into the composition of a birational morphism
+
An algebraic surface representing the two-dimensional analogue of a [[Hyper-elliptic curve|hyper-elliptic curve]]. A non-singular algebraic projective surface  $  X $
 +
over an algebraically closed field  $  k $
 +
is said to be a double plane if its field of rational functions  $  k ( X ) $
 +
is a quadratic extension of the field of rational functions in two variables. If the characteristic of the field is distinct from two (in what follows, this condition is assumed to hold), any double plane is birationally isomorphic to the affine surface given in three-dimensional affine space by an equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339408.png" /></td> </tr></table>
+
$$
 +
z  ^ {2} + F ( x , y )  = 0.
 +
$$
  
onto some normal surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d0339409.png" /> and a finite morphism of the second degree
+
Surfaces of this type are sometimes also referred to as double planes. For each double plane  $  X $
 +
there exists a morphism $  f $
 +
into the projective plane  $  P  ^ {2} ( k) $
 +
which splits into the composition of a birational morphism
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394010.png" /></td> </tr></table>
+
$$
 +
\phi : X \rightarrow X _ {1}  $$
  
The branching curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394011.png" /> of the morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394012.png" /> is said to be the branching curve of the double plane (and is not, in general, uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394013.png" />). The branching curve of a double plane plays an important role in the study of double planes. Thus, it may serve for the computation of numerical invariants of double planes. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394014.png" /> is irreducible, then the irregularity of the double plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394015.png" /> is zero. If the degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394016.png" /> (which is always even) is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394017.png" />, and if all singularities of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394018.png" /> are ordinary double or cuspidal points only (cf. [[Singular point|Singular point]] of an algebraic curve), the arithmetic genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394019.png" /> and the Euler characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394020.png" /> (topological or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394021.png" />-adic) are calculated by the formulas:
+
onto some normal surface  $  X _ {1} $
 +
and a finite morphism of the second degree
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394022.png" /></td> </tr></table>
+
$$
 +
\phi _ {1} : X _ {1}  \rightarrow  P  ^ {2} ( k) .
 +
$$
  
In the general case there exists a birational morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394023.png" /> such that the projection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394024.png" /> of the normalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394025.png" /> of the fibred product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394027.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394028.png" /> is a finite covering of degree 2 with a non-singular (and, possibly, reducible) branching curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394029.png" />. In such case the following formulas are valid:
+
The branching curve  $  W $
 +
of the morphism $  \phi _ {1} $
 +
is said to be the branching curve of the double plane (and is not, in general, uniquely determined by  $  X $).  
 +
The branching curve of a double plane plays an important role in the study of double planes. Thus, it may serve for the computation of numerical invariants of double planes. If  $  W $
 +
is irreducible, then the irregularity of the double plane  $  X $
 +
is zero. If the degree of  $  W $(
 +
which is always even) is  $  2k $,
 +
and if all singularities of  $  W $
 +
are ordinary double or cuspidal points only (cf. [[Singular point|Singular point]] of an algebraic curve), the arithmetic genus  $  p _ {a} ( X) $
 +
and the Euler characteristic  $  \chi ( X) $(
 +
topological or  $  l $-
 +
adic) are calculated by the formulas:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394030.png" /></td> </tr></table>
+
$$
 +
p _ {a} ( X)  =
 +
\frac{( k - 1 ) ( k - 2 ) }{2}
 +
,\ \
 +
\chi ( X)  = 4k  ^ {2} - 6k + 6 .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394031.png" /></td> </tr></table>
+
In the general case there exists a birational morphism  $  F \rightarrow P  ^ {2} ( k) $
 +
such that the projection on  $  F $
 +
of the normalization  $  \overline{X}\; $
 +
of the fibred product of  $  X $
 +
and  $  F $
 +
over  $  P  ^ {2} ( k) $
 +
is a finite covering of degree 2 with a non-singular (and, possibly, reducible) branching curve  $  W $.
 +
In such case the following formulas are valid:
  
For any curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394032.png" /> of even degree on the projective plane there exists a double plane with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394033.png" /> as its branching curve. The choice of a suitable curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394034.png" /> often makes it possible to solve the problem of the construction of an algebraic surface with given invariants [[#References|[1]]], [[#References|[3]]].
+
$$
 +
p _ {a} ( X)  = p _ {a} ( \overline{X}\; )  = 1 -
 +
\frac{\chi ( \overline{W}\; ) }{4}
 +
-
  
The classification of double planes is carried out in each class of algebraic surfaces separately. Rational and linear double planes have been described [[#References|[5]]]; double planes which are elliptic surfaces or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394035.png" />-surfaces have been listed [[#References|[3]]] (cf. also [[Elliptic surface|Elliptic surface]]; [[K3-surface|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033940/d03394036.png" />-surface]]). Numerous examples of double planes of fundamental type have been considered [[#References|[3]]], .
+
\frac{( \overline{W}\; )  ^ {2} }{8}
 +
,
 +
$$
 +
 
 +
$$
 +
\chi ( \overline{X}\; )  =  2 \chi ( F) - \chi ( \overline{W}\; ) .
 +
$$
 +
 
 +
For any curve  $  W $
 +
of even degree on the projective plane there exists a double plane with  $  W $
 +
as its branching curve. The choice of a suitable curve  $  W $
 +
often makes it possible to solve the problem of the construction of an algebraic surface with given invariants [[#References|[1]]], [[#References|[3]]].
 +
 
 +
The classification of double planes is carried out in each class of algebraic surfaces separately. Rational and linear double planes have been described [[#References|[5]]]; double planes which are elliptic surfaces or $  K3 $-
 +
surfaces have been listed [[#References|[3]]] (cf. also [[Elliptic surface|Elliptic surface]]; [[K3-surface| $  K3 $-
 +
surface]]). Numerous examples of double planes of fundamental type have been considered [[#References|[3]]], .
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.V. Dolgachev, V.A. Iskovskikh, "Geometry of algebraic varieties" ''J. Soviet Math.'' , '''5''' : 6 (1976) pp. 803–864 ''Itogi Nauk. i Tekhn. Algebra Topol. Geom.'' , '''12''' (1974) pp. 77–170</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, "Algebraic surfaces" , Springer (1971) {{MR|0469915}} {{ZBL|0219.14020}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. Enriques, "Le superficie algebraiche" , Bologna (1949)</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top"> L. Campedelli, "Siu piani doppi con curva di diramazione dell'ottavo ordine" ''Atti Accad. Naz. Lincei Rend., Ser. 6'' , '''15''' (1932) pp. 203–208</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top"> L. Campedelli, "Siu piani doppi con curva di diramazione del decimo ordine" ''Atti Accad. Naz. Lincei Rend., Ser. 6'' , '''15''' (1932) pp. 358–362</TD></TR><TR><TD valign="top">[4c]</TD> <TD valign="top"> L. Campedelli, "Sopra alcuni piani doppi notevoli con curva di diramazione del decimo ordine" ''Atti Accad. Naz. Lincei Rend., Ser. 6'' , '''15''' (1932) pp. 536–542 {{MR|}} {{ZBL|0004.36306}} {{ZBL|58.1232.02}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H.W. Jung, "Rationale und halbrationale Doppelebene" ''J. Reine Angew. Math.'' , '''184''' : 4 (1942) pp. 199–237</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.V. Dolgachev, V.A. Iskovskikh, "Geometry of algebraic varieties" ''J. Soviet Math.'' , '''5''' : 6 (1976) pp. 803–864 ''Itogi Nauk. i Tekhn. Algebra Topol. Geom.'' , '''12''' (1974) pp. 77–170</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, "Algebraic surfaces" , Springer (1971) {{MR|0469915}} {{ZBL|0219.14020}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. Enriques, "Le superficie algebraiche" , Bologna (1949)</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top"> L. Campedelli, "Siu piani doppi con curva di diramazione dell'ottavo ordine" ''Atti Accad. Naz. Lincei Rend., Ser. 6'' , '''15''' (1932) pp. 203–208</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top"> L. Campedelli, "Siu piani doppi con curva di diramazione del decimo ordine" ''Atti Accad. Naz. Lincei Rend., Ser. 6'' , '''15''' (1932) pp. 358–362</TD></TR><TR><TD valign="top">[4c]</TD> <TD valign="top"> L. Campedelli, "Sopra alcuni piani doppi notevoli con curva di diramazione del decimo ordine" ''Atti Accad. Naz. Lincei Rend., Ser. 6'' , '''15''' (1932) pp. 536–542 {{MR|}} {{ZBL|0004.36306}} {{ZBL|58.1232.02}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H.W. Jung, "Rationale und halbrationale Doppelebene" ''J. Reine Angew. Math.'' , '''184''' : 4 (1942) pp. 199–237</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. van de Ven, "Complex algebraic surfaces" , Springer (1984)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. van de Ven, "Complex algebraic surfaces" , Springer (1984)</TD></TR></table>

Revision as of 19:36, 5 June 2020


An algebraic surface representing the two-dimensional analogue of a hyper-elliptic curve. A non-singular algebraic projective surface $ X $ over an algebraically closed field $ k $ is said to be a double plane if its field of rational functions $ k ( X ) $ is a quadratic extension of the field of rational functions in two variables. If the characteristic of the field is distinct from two (in what follows, this condition is assumed to hold), any double plane is birationally isomorphic to the affine surface given in three-dimensional affine space by an equation

$$ z ^ {2} + F ( x , y ) = 0. $$

Surfaces of this type are sometimes also referred to as double planes. For each double plane $ X $ there exists a morphism $ f $ into the projective plane $ P ^ {2} ( k) $ which splits into the composition of a birational morphism

$$ \phi : X \rightarrow X _ {1} $$

onto some normal surface $ X _ {1} $ and a finite morphism of the second degree

$$ \phi _ {1} : X _ {1} \rightarrow P ^ {2} ( k) . $$

The branching curve $ W $ of the morphism $ \phi _ {1} $ is said to be the branching curve of the double plane (and is not, in general, uniquely determined by $ X $). The branching curve of a double plane plays an important role in the study of double planes. Thus, it may serve for the computation of numerical invariants of double planes. If $ W $ is irreducible, then the irregularity of the double plane $ X $ is zero. If the degree of $ W $( which is always even) is $ 2k $, and if all singularities of $ W $ are ordinary double or cuspidal points only (cf. Singular point of an algebraic curve), the arithmetic genus $ p _ {a} ( X) $ and the Euler characteristic $ \chi ( X) $( topological or $ l $- adic) are calculated by the formulas:

$$ p _ {a} ( X) = \frac{( k - 1 ) ( k - 2 ) }{2} ,\ \ \chi ( X) = 4k ^ {2} - 6k + 6 . $$

In the general case there exists a birational morphism $ F \rightarrow P ^ {2} ( k) $ such that the projection on $ F $ of the normalization $ \overline{X}\; $ of the fibred product of $ X $ and $ F $ over $ P ^ {2} ( k) $ is a finite covering of degree 2 with a non-singular (and, possibly, reducible) branching curve $ W $. In such case the following formulas are valid:

$$ p _ {a} ( X) = p _ {a} ( \overline{X}\; ) = 1 - \frac{\chi ( \overline{W}\; ) }{4} - \frac{( \overline{W}\; ) ^ {2} }{8} , $$

$$ \chi ( \overline{X}\; ) = 2 \chi ( F) - \chi ( \overline{W}\; ) . $$

For any curve $ W $ of even degree on the projective plane there exists a double plane with $ W $ as its branching curve. The choice of a suitable curve $ W $ often makes it possible to solve the problem of the construction of an algebraic surface with given invariants [1], [3].

The classification of double planes is carried out in each class of algebraic surfaces separately. Rational and linear double planes have been described [5]; double planes which are elliptic surfaces or $ K3 $- surfaces have been listed [3] (cf. also Elliptic surface; $ K3 $- surface). Numerous examples of double planes of fundamental type have been considered [3], .

References

[1] I.V. Dolgachev, V.A. Iskovskikh, "Geometry of algebraic varieties" J. Soviet Math. , 5 : 6 (1976) pp. 803–864 Itogi Nauk. i Tekhn. Algebra Topol. Geom. , 12 (1974) pp. 77–170
[2] O. Zariski, "Algebraic surfaces" , Springer (1971) MR0469915 Zbl 0219.14020
[3] F. Enriques, "Le superficie algebraiche" , Bologna (1949)
[4a] L. Campedelli, "Siu piani doppi con curva di diramazione dell'ottavo ordine" Atti Accad. Naz. Lincei Rend., Ser. 6 , 15 (1932) pp. 203–208
[4b] L. Campedelli, "Siu piani doppi con curva di diramazione del decimo ordine" Atti Accad. Naz. Lincei Rend., Ser. 6 , 15 (1932) pp. 358–362
[4c] L. Campedelli, "Sopra alcuni piani doppi notevoli con curva di diramazione del decimo ordine" Atti Accad. Naz. Lincei Rend., Ser. 6 , 15 (1932) pp. 536–542 Zbl 0004.36306 Zbl 58.1232.02
[5] H.W. Jung, "Rationale und halbrationale Doppelebene" J. Reine Angew. Math. , 184 : 4 (1942) pp. 199–237

Comments

References

[a1] A. van de Ven, "Complex algebraic surfaces" , Springer (1984)
How to Cite This Entry:
Double plane. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Double_plane&oldid=24427
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article