Difference between revisions of "Division algebra"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0336801.png | ||
+ | $#A+1 = 44 n = 0 | ||
+ | $#C+1 = 44 : ~/encyclopedia/old_files/data/D033/D.0303680 Division algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | An algebra $ A $ | ||
+ | over a field $ F $ | ||
+ | such that for any elements $ a \neq 0 $ | ||
+ | and $ b $ | ||
+ | the equations $ ax = b $, | ||
+ | $ ya = b $ | ||
+ | are solvable in $ A $. | ||
+ | An associative division algebra, considered as a ring, is a skew-field, its centre $ C $ | ||
+ | is a field, and $ C \supseteq F $. | ||
+ | If $ C = F $, | ||
+ | the division algebra $ A $ | ||
+ | is called a central division algebra. Finite-dimensional central associative division algebras over $ F $ | ||
+ | may be identified, up to an isomorphism, with the elements of the [[Brauer group|Brauer group]] $ B( F ) $ | ||
+ | of the field $ F $. | ||
+ | Let $ [ A: F ] $ | ||
+ | denote the dimension of $ A $ | ||
+ | over $ F $. | ||
+ | If $ A \in B( F ) $ | ||
+ | and if $ L $ | ||
+ | is the maximal subfield in $ A $( | ||
+ | $ L \supseteq F $), | ||
+ | then $ [ A: F ] = {[ L: F ] } ^ {2} $. | ||
+ | According to the [[Frobenius theorem|Frobenius theorem]], all associative finite-dimensional division algebras over the field of real numbers $ \mathbf R $ | ||
+ | are exhausted by $ \mathbf R $ | ||
+ | itself, the field of complex numbers, and the [[Quaternion|quaternion]] algebra. For this reason the group $ B( \mathbf R ) $ | ||
+ | is cyclic of order two. If the associativity requirement is dropped, there is yet another example of a division algebra over the field of real numbers: the [[Cayley–Dickson algebra|Cayley–Dickson algebra]]. This algebra is alternative, and its dimension over $ \mathbf R $ | ||
+ | is 8. If $ A $ | ||
+ | is a finite-dimensional (not necessarily associative) division algebra over $ \mathbf R $, | ||
+ | then $ [ A: \mathbf R ] $ | ||
+ | has one of the values 1, 2, 4, or 8. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian) {{MR|0158000}} {{ZBL|0121.25901}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Albert, "Structure of algebras" , Amer. Math. Soc. (1939) {{MR|0000595}} {{ZBL|0023.19901}} {{ZBL|65.0094.02}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.N. Herstein, "Noncommutative rings" , Math. Assoc. Amer. (1968) {{MR|1535024}} {{MR|0227205}} {{ZBL|0177.05801}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.F. Adams, "On the non-existence of elements of Hopf invariant one" ''Ann. of Math.'' , '''72''' : 1 (1960) pp. 20–104 {{MR|0141119}} {{ZBL|0096.17404}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian) {{MR|0158000}} {{ZBL|0121.25901}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Albert, "Structure of algebras" , Amer. Math. Soc. (1939) {{MR|0000595}} {{ZBL|0023.19901}} {{ZBL|65.0094.02}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.N. Herstein, "Noncommutative rings" , Math. Assoc. Amer. (1968) {{MR|1535024}} {{MR|0227205}} {{ZBL|0177.05801}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.F. Adams, "On the non-existence of elements of Hopf invariant one" ''Ann. of Math.'' , '''72''' : 1 (1960) pp. 20–104 {{MR|0141119}} {{ZBL|0096.17404}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Over a finite field every finite-dimensional central division algebra is automatically commutative. For infinite-dimensional division algebras the situation is quite different, because a result of Mokar–Limonov states that such an algebra contains a free algebra in two variables. | Over a finite field every finite-dimensional central division algebra is automatically commutative. For infinite-dimensional division algebras the situation is quite different, because a result of Mokar–Limonov states that such an algebra contains a free algebra in two variables. | ||
− | If a finite-dimensional central division algebra | + | If a finite-dimensional central division algebra $ D $ |
+ | contains a maximal commutative subfield $ L $ | ||
+ | which is a [[Galois extension|Galois extension]] of $ F $, | ||
+ | then $ D $ | ||
+ | is a [[Cross product|cross product]] of $ L $ | ||
+ | and $ G = \mathop{\rm Gal} ( L/ F ) $ | ||
+ | in the sense that $ D $ | ||
+ | is the free $ L $- | ||
+ | module generated by $ \{ {u _ \sigma } : {\sigma \in G } \} $ | ||
+ | with product determined by: | ||
− | + | $$ \tag{a1 } | |
+ | \left . | ||
+ | \begin{array}{ll} | ||
+ | u _ \sigma u _ \tau = c ( \sigma , \tau ) u _ {\sigma \tau } &\textrm{ for some } c ( \sigma , \tau ) \in L ^ {*} , \\ | ||
+ | u _ \sigma \lambda = \lambda ^ \sigma u _ \sigma &\textrm{ for } \lambda \in L ,\ \tau \in G . \\ | ||
+ | \end{array} | ||
+ | \right \} | ||
+ | $$ | ||
− | Associativity of | + | Associativity of $ D $ |
+ | entails that $ c : G \times G \rightarrow L ^ {*} $ | ||
+ | represents an element of $ H ^ {2} ( G , L ^ {*} ) $( | ||
+ | the second [[Galois cohomology|Galois cohomology]] group). One of the basic problems in algebra was formulated by A. Albert (1931): Is every finite-dimensional central division algebra necessarily a cross product? In 1972, S. Amitsur provided a counter-example using properties of generic division algebras resulting from the theory of PI-algebras (see [[PI-algebra|PI-algebra]], [[#References|[a2]]]). Other examples of division algebras were obtain by F. van Ostaeyen (1972 Thesis, cf. [[#References|[a3]]]), i.e. generic cross products, a notion generalized by Amitsur and D. Saltman (1978), describing all cross product division algebras for a given group $ G $ | ||
+ | over the field $ F $ | ||
+ | as reductions of a generic division algebra. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.H. Schofield, "Representations of rings over skew fields" , London Math. Soc. (1986) {{MR|0800853}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Jacobson, "PI algebras. An introduction" , Springer (1975) {{MR|0369421}} {{ZBL|0326.16013}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> F. van Oystaeyen, "Prime spectra in non-commutative algebra" , Springer (1975) {{MR|}} {{ZBL|0302.16001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.H. Schofield, "Representations of rings over skew fields" , London Math. Soc. (1986) {{MR|0800853}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Jacobson, "PI algebras. An introduction" , Springer (1975) {{MR|0369421}} {{ZBL|0326.16013}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> F. van Oystaeyen, "Prime spectra in non-commutative algebra" , Springer (1975) {{MR|}} {{ZBL|0302.16001}} </TD></TR></table> |
Revision as of 19:36, 5 June 2020
An algebra $ A $
over a field $ F $
such that for any elements $ a \neq 0 $
and $ b $
the equations $ ax = b $,
$ ya = b $
are solvable in $ A $.
An associative division algebra, considered as a ring, is a skew-field, its centre $ C $
is a field, and $ C \supseteq F $.
If $ C = F $,
the division algebra $ A $
is called a central division algebra. Finite-dimensional central associative division algebras over $ F $
may be identified, up to an isomorphism, with the elements of the Brauer group $ B( F ) $
of the field $ F $.
Let $ [ A: F ] $
denote the dimension of $ A $
over $ F $.
If $ A \in B( F ) $
and if $ L $
is the maximal subfield in $ A $(
$ L \supseteq F $),
then $ [ A: F ] = {[ L: F ] } ^ {2} $.
According to the Frobenius theorem, all associative finite-dimensional division algebras over the field of real numbers $ \mathbf R $
are exhausted by $ \mathbf R $
itself, the field of complex numbers, and the quaternion algebra. For this reason the group $ B( \mathbf R ) $
is cyclic of order two. If the associativity requirement is dropped, there is yet another example of a division algebra over the field of real numbers: the Cayley–Dickson algebra. This algebra is alternative, and its dimension over $ \mathbf R $
is 8. If $ A $
is a finite-dimensional (not necessarily associative) division algebra over $ \mathbf R $,
then $ [ A: \mathbf R ] $
has one of the values 1, 2, 4, or 8.
References
[1] | A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian) MR0158000 Zbl 0121.25901 |
[2] | A.A. Albert, "Structure of algebras" , Amer. Math. Soc. (1939) MR0000595 Zbl 0023.19901 Zbl 65.0094.02 |
[3] | I.N. Herstein, "Noncommutative rings" , Math. Assoc. Amer. (1968) MR1535024 MR0227205 Zbl 0177.05801 |
[4] | J.F. Adams, "On the non-existence of elements of Hopf invariant one" Ann. of Math. , 72 : 1 (1960) pp. 20–104 MR0141119 Zbl 0096.17404 |
Comments
Over a finite field every finite-dimensional central division algebra is automatically commutative. For infinite-dimensional division algebras the situation is quite different, because a result of Mokar–Limonov states that such an algebra contains a free algebra in two variables.
If a finite-dimensional central division algebra $ D $ contains a maximal commutative subfield $ L $ which is a Galois extension of $ F $, then $ D $ is a cross product of $ L $ and $ G = \mathop{\rm Gal} ( L/ F ) $ in the sense that $ D $ is the free $ L $- module generated by $ \{ {u _ \sigma } : {\sigma \in G } \} $ with product determined by:
$$ \tag{a1 } \left . \begin{array}{ll} u _ \sigma u _ \tau = c ( \sigma , \tau ) u _ {\sigma \tau } &\textrm{ for some } c ( \sigma , \tau ) \in L ^ {*} , \\ u _ \sigma \lambda = \lambda ^ \sigma u _ \sigma &\textrm{ for } \lambda \in L ,\ \tau \in G . \\ \end{array} \right \} $$
Associativity of $ D $ entails that $ c : G \times G \rightarrow L ^ {*} $ represents an element of $ H ^ {2} ( G , L ^ {*} ) $( the second Galois cohomology group). One of the basic problems in algebra was formulated by A. Albert (1931): Is every finite-dimensional central division algebra necessarily a cross product? In 1972, S. Amitsur provided a counter-example using properties of generic division algebras resulting from the theory of PI-algebras (see PI-algebra, [a2]). Other examples of division algebras were obtain by F. van Ostaeyen (1972 Thesis, cf. [a3]), i.e. generic cross products, a notion generalized by Amitsur and D. Saltman (1978), describing all cross product division algebras for a given group $ G $ over the field $ F $ as reductions of a generic division algebra.
References
[a1] | A.H. Schofield, "Representations of rings over skew fields" , London Math. Soc. (1986) MR0800853 |
[a2] | N. Jacobson, "PI algebras. An introduction" , Springer (1975) MR0369421 Zbl 0326.16013 |
[a3] | F. van Oystaeyen, "Prime spectra in non-commutative algebra" , Springer (1975) Zbl 0302.16001 |
Division algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Division_algebra&oldid=24066