Namespaces
Variants
Actions

Difference between revisions of "Cohomological dimension"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
The cohomological dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230501.png" /> of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230502.png" /> relative to the group of coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230503.png" /> is the maximum integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230504.png" /> for which there exists closed subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230505.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230506.png" /> such that the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230507.png" /> are non-zero. The homological dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230508.png" /> is similarly defined (cf. [[Homological dimension of a space|Homological dimension of a space]]). Finite Lebesgue dimension (covering dimension) is the same as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c0230509.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305010.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305011.png" /> is the subgroup of the integers (or real numbers modulo 1). In Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305012.png" /> the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305013.png" /> is equivalent to the property that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305014.png" /> is locally linked by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305015.png" />-dimensional cycles (with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305016.png" />). For paracompact spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305017.png" />, the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305018.png" /> is equivalent to the existence of soft resolutions (cf. [[Soft sheaf|Soft sheaf]] and [[Resolution|Resolution]]) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305019.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305020.png" />. Since soft sheaves are acyclic, in this way a connection is established with the general definition of dimension in homological algebra; for example, the injective (or projective) dimension of a module is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305021.png" /> if it has an injective (or projective) resolution of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305022.png" />; the global dimension of a ring is the maximum of the injective (or projective) dimensions of the modules over the ring and is the analogue of the Lebesgue dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305023.png" />.
+
<!--
 +
c0230501.png
 +
$#A+1 = 109 n = 0
 +
$#C+1 = 109 : ~/encyclopedia/old_files/data/C023/C.0203050 Cohomological dimension
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The cohomological dimension  $  (  \mathop{\rm dim} _ {G}  X ) $
 +
of a topological space $  X $
 +
relative to the group of coefficients $  G $
 +
is the maximum integer $  p $
 +
for which there exists closed subsets $  A $
 +
of $  X $
 +
such that the cohomology groups $  H  ^ {p} ( X , A ;  G ) $
 +
are non-zero. The homological dimension $  h  \mathop{\rm dim} _ {G}  X $
 +
is similarly defined (cf. [[Homological dimension of a space|Homological dimension of a space]]). Finite Lebesgue dimension (covering dimension) is the same as $  \mathop{\rm dim} _ {G} $(
 +
or $  h  \mathop{\rm dim} _ {G} $)  
 +
if $  G $
 +
is the subgroup of the integers (or real numbers modulo 1). In Euclidean space $  X \subset  \mathbf R  ^ {n} $
 +
the equation $  \mathop{\rm dim} _ {G}  X = p $
 +
is equivalent to the property that $  X $
 +
is locally linked by $  ( n - p - 1 ) $-
 +
dimensional cycles (with coefficients in $  G $).  
 +
For paracompact spaces $  X $,  
 +
the inequality $  \mathop{\rm dim} _ {G}  X \leq  p $
 +
is equivalent to the existence of soft resolutions (cf. [[Soft sheaf|Soft sheaf]] and [[Resolution|Resolution]]) for $  G $
 +
of length $  p $.  
 +
Since soft sheaves are acyclic, in this way a connection is established with the general definition of dimension in homological algebra; for example, the injective (or projective) dimension of a module is $  \leq  p $
 +
if it has an injective (or projective) resolution of length $  p $;  
 +
the global dimension of a ring is the maximum of the injective (or projective) dimensions of the modules over the ring and is the analogue of the Lebesgue dimension of $  X $.
  
 
====References====
 
====References====
Line 6: Line 40:
 
''E.G. Sklyarenko''
 
''E.G. Sklyarenko''
  
The cohomological dimension of a scheme is the analogue of the notion of the cohomological dimension of a topological space for an algebraic variety or a scheme with a selected cohomology theory. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305024.png" /> be an algebraic variety or a Noetherian scheme of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305025.png" />. The cohomological dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305026.png" /> is defined to be the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305027.png" /> equal to the infimum of all those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305028.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305029.png" /> for all Abelian sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305030.png" /> on the topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305031.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305032.png" />. The inequality
+
The cohomological dimension of a scheme is the analogue of the notion of the cohomological dimension of a topological space for an algebraic variety or a scheme with a selected cohomology theory. Let $  X $
 +
be an algebraic variety or a Noetherian scheme of dimension $  n $.  
 +
The cohomological dimension of $  X $
 +
is defined to be the integer $  \mathop{\rm cd} ( X) $
 +
equal to the infimum of all those $  i $
 +
for which $  H  ^ {j} ( X , {\mathcal F} ) = 0 $
 +
for all Abelian sheaves $  {\mathcal F} $
 +
on the topological space $  X $
 +
when $  j > i $.  
 +
The inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305033.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm cd} ( X)  \leq  n
 +
$$
  
holds. The coherent cohomological dimension of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305034.png" /> is the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305035.png" /> equal to the infimum of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305036.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305037.png" /> for all coherent algebraic sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305038.png" /> (cf. [[Coherent algebraic sheaf|Coherent algebraic sheaf]]) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305039.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305040.png" />. By definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305041.png" />. By Serre's theorem, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305042.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305043.png" /> is an affine scheme. On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305044.png" /> is an algebraic variety over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305045.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305046.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305047.png" /> is proper over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305048.png" /> (Lichtenbaum's theorem, see [[#References|[3]]]).
+
holds. The coherent cohomological dimension of the scheme $  X $
 +
is the number $  \mathop{\rm cohcd} ( X) $
 +
equal to the infimum of those $  i $
 +
for which $  H  ^ {j} ( X , {\mathcal F} ) = 0 $
 +
for all coherent algebraic sheaves $  {\mathcal F} $(
 +
cf. [[Coherent algebraic sheaf|Coherent algebraic sheaf]]) on $  X $
 +
when $  j > i $.  
 +
By definition, $  \mathop{\rm cohcd} ( X) \leq  \mathop{\rm cd} ( X) $.  
 +
By Serre's theorem, $  \mathop{\rm cohcd} ( X) = 0 $
 +
if and only if $  X $
 +
is an affine scheme. On the other hand, if $  X $
 +
is an algebraic variety over a field $  k $,  
 +
then $  \mathop{\rm cohcd} ( X) = n $
 +
if and only if $  X $
 +
is proper over $  k $(
 +
Lichtenbaum's theorem, see [[#References|[3]]]).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305049.png" /> be a proper scheme over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305050.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305051.png" /> be a closed subscheme of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305052.png" /> of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305053.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305054.png" />. Then the following statements hold ([[#References|[2]]]–[[#References|[4]]]).
+
Let $  X $
 +
be a proper scheme over a field $  k $,  
 +
let $  Y $
 +
be a closed subscheme of $  X $
 +
of codimension $  d $
 +
and let $  U = X \setminus  Y $.  
 +
Then the following statements hold ([[#References|[2]]]–[[#References|[4]]]).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305055.png" /> is the set-theoretic complete intersection of ample divisors on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305056.png" />, then
+
If $  Y $
 +
is the set-theoretic complete intersection of ample divisors on $  X $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305057.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm cohcd} ( U)  \leq  d - 1 .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305058.png" /> is a projective Cohen–Macaulay variety (for instance, a non-singular projective variety) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305059.png" /> is zero-dimensional, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305060.png" />. The condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305061.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305062.png" /> being connected. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305063.png" /> is a projective space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305064.png" /> is connected and has dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305065.png" />, then
+
If $  X $
 +
is a projective Cohen–Macaulay variety (for instance, a non-singular projective variety) and $  Y $
 +
is zero-dimensional, then $  \mathop{\rm cohcd} ( U) = n - 1 $.  
 +
The condition $  \mathop{\rm cohcd} ( U) \leq  n - 2 $
 +
is equivalent to $  Y $
 +
being connected. If $  X = P  ^ {n} $
 +
is a projective space and $  Y $
 +
is connected and has dimension $  \geq  1 $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305066.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm cohcd} ( U)  < n - 1 .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305067.png" /> is a complex algebraic variety, then one can consider the cohomological dimension of the corresponding topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305068.png" />. In the general case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305069.png" /> is a Noetherian scheme, the analogue of cohomological dimension is the notion of the étale cohomological dimension of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305070.png" />. More precisely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305071.png" /> be the [[Etale topology|étale topology]] of the Grothendieck scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305072.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305073.png" /> be a prime number. By the cohomological <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305075.png" />-dimension of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305076.png" /> (or the étale cohomological dimension) one means the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305077.png" /> equal to the infimum of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305078.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305079.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305080.png" />-torsion Abelian sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305081.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305082.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305083.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305084.png" /> is an affine scheme, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305085.png" /> is also called the cohomological dimension of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305086.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305087.png" /> is a field, then the notion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305088.png" /> is the same as that of the cohomological dimension of a field as studied in the theory of [[Galois cohomology|Galois cohomology]].
+
If $  X $
 +
is a complex algebraic variety, then one can consider the cohomological dimension of the corresponding topological space $  X ( C) $.  
 +
In the general case when $  X $
 +
is a Noetherian scheme, the analogue of cohomological dimension is the notion of the étale cohomological dimension of the scheme $  X $.  
 +
More precisely, let $  X _ {\textrm{ et } }  $
 +
be the [[Etale topology|étale topology]] of the Grothendieck scheme $  X $
 +
and let $  l $
 +
be a prime number. By the cohomological $  l $-
 +
dimension of the scheme $  X $(
 +
or the étale cohomological dimension) one means the number $  \mathop{\rm cd} _ {l} ( X) $
 +
equal to the infimum of those $  i $
 +
for which $  H  ^ {j} ( X _ {\textrm{ et } }  , {\mathcal F} ) = 0 $
 +
for all $  l $-
 +
torsion Abelian sheaves $  {\mathcal F} $
 +
on $  X _ {\textrm{ et } }  $
 +
when $  j > i $.  
 +
If $  X = \mathop{\rm Spec}  A $
 +
is an affine scheme, then $  \mathop{\rm cd} _ {l} (  \mathop{\rm Spec}  A ) $
 +
is also called the cohomological dimension of the ring $  A $.  
 +
In particular, if $  A $
 +
is a field, then the notion of $  \mathop{\rm cd} _ {l} ( A) $
 +
is the same as that of the cohomological dimension of a field as studied in the theory of [[Galois cohomology|Galois cohomology]].
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305089.png" /> is an algebraic variety of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305090.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305091.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305092.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305093.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305094.png" /> is a separably closed field, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305095.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305096.png" /> is an affine algebraic variety over the separably closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305097.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305098.png" />.
+
If $  X $
 +
is an algebraic variety of dimension $  n $
 +
over a field $  k $
 +
and if $  l \neq  \mathop{\rm char}  k $,  
 +
then $  \mathop{\rm cd} _ {l} ( X) \leq  2 n +  \mathop{\rm cd} _ {l} ( k) $.  
 +
In particular, if $  k $
 +
is a separably closed field, then $  \mathop{\rm cd} _ {l} ( X) \leq  2 n $.  
 +
If $  X $
 +
is an affine algebraic variety over the separably closed field $  k $,  
 +
then $  \mathop{\rm cd} _ {l} ( X) \leq  \mathop{\rm dim}  X $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c02305099.png" /> be a field of finite characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050100.png" />; then for any Noetherian scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050101.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050102.png" />, the inequality
+
Let $  k $
 +
be a field of finite characteristic $  p $;  
 +
then for any Noetherian scheme $  X $
 +
over $  k $,  
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050103.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm cd} _ {p} ( X)  \leq    \mathop{\rm cohcd} ( X) + 1
 +
$$
  
holds. In particular, for any Noetherian commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050104.png" />,
+
holds. In particular, for any Noetherian commutative ring $  A $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050105.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm cd} _ {p} ( A)  \leq  1 .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050106.png" /> is a quasi-projective algebraic variety over the separably closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050107.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050108.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050109.png" /> is the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023050/c023050110.png" />.
+
If $  X $
 +
is a quasi-projective algebraic variety over the separably closed field $  k $,  
 +
then $  \mathop{\rm cd} _ {p} ( X) \leq  \mathop{\rm dim}  X $,  
 +
where $  p $
 +
is the characteristic of $  k $.
  
 
====References====
 
====References====
Line 42: Line 164:
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Iversen, "Cohomology of sheaves" , Springer (1986) {{MR|0842190}} {{ZBL|0559.55001}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Iversen, "Cohomology of sheaves" , Springer (1986) {{MR|0842190}} {{ZBL|0559.55001}} </TD></TR></table>

Latest revision as of 17:45, 4 June 2020


The cohomological dimension $ ( \mathop{\rm dim} _ {G} X ) $ of a topological space $ X $ relative to the group of coefficients $ G $ is the maximum integer $ p $ for which there exists closed subsets $ A $ of $ X $ such that the cohomology groups $ H ^ {p} ( X , A ; G ) $ are non-zero. The homological dimension $ h \mathop{\rm dim} _ {G} X $ is similarly defined (cf. Homological dimension of a space). Finite Lebesgue dimension (covering dimension) is the same as $ \mathop{\rm dim} _ {G} $( or $ h \mathop{\rm dim} _ {G} $) if $ G $ is the subgroup of the integers (or real numbers modulo 1). In Euclidean space $ X \subset \mathbf R ^ {n} $ the equation $ \mathop{\rm dim} _ {G} X = p $ is equivalent to the property that $ X $ is locally linked by $ ( n - p - 1 ) $- dimensional cycles (with coefficients in $ G $). For paracompact spaces $ X $, the inequality $ \mathop{\rm dim} _ {G} X \leq p $ is equivalent to the existence of soft resolutions (cf. Soft sheaf and Resolution) for $ G $ of length $ p $. Since soft sheaves are acyclic, in this way a connection is established with the general definition of dimension in homological algebra; for example, the injective (or projective) dimension of a module is $ \leq p $ if it has an injective (or projective) resolution of length $ p $; the global dimension of a ring is the maximum of the injective (or projective) dimensions of the modules over the ring and is the analogue of the Lebesgue dimension of $ X $.

References

[1] P.S. Aleksandrov, Ann. of Math. (1929) pp. 101–187 , 30
[2] P.S. Aleksandrov, "Dimensionstheorie: Ein Beitrag zur Geometrie der abgeschlossenen Mengen" Math. Ann. , 106 (1932) pp. 161–238
[3] P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)
[4] A.E. [A.E. Kharlap] Harlap, "Local homology and cohomology, homology dimension and generalized manifolds" Math. USSR Sb. , 25 : 3 (1975) pp. 323–349 Mat. Sb. , 96 : 3 (1975) pp. 347–373 Zbl 0325.57002
[5] V.I. Kuz'minov, "Homological dimension theory" Russian Math. Surveys , 29 : 5 (1968) pp. 1–45 Uspekhi Mat. Nauk , 23 : 5 (1968) pp. 3–49 Zbl 0187.20103
[6] G.E. Bredon, "Sheaf theory" , McGraw-Hill (1967) MR0221500 Zbl 0158.20505
[7] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) MR0077480 Zbl 0075.24305

E.G. Sklyarenko

The cohomological dimension of a scheme is the analogue of the notion of the cohomological dimension of a topological space for an algebraic variety or a scheme with a selected cohomology theory. Let $ X $ be an algebraic variety or a Noetherian scheme of dimension $ n $. The cohomological dimension of $ X $ is defined to be the integer $ \mathop{\rm cd} ( X) $ equal to the infimum of all those $ i $ for which $ H ^ {j} ( X , {\mathcal F} ) = 0 $ for all Abelian sheaves $ {\mathcal F} $ on the topological space $ X $ when $ j > i $. The inequality

$$ \mathop{\rm cd} ( X) \leq n $$

holds. The coherent cohomological dimension of the scheme $ X $ is the number $ \mathop{\rm cohcd} ( X) $ equal to the infimum of those $ i $ for which $ H ^ {j} ( X , {\mathcal F} ) = 0 $ for all coherent algebraic sheaves $ {\mathcal F} $( cf. Coherent algebraic sheaf) on $ X $ when $ j > i $. By definition, $ \mathop{\rm cohcd} ( X) \leq \mathop{\rm cd} ( X) $. By Serre's theorem, $ \mathop{\rm cohcd} ( X) = 0 $ if and only if $ X $ is an affine scheme. On the other hand, if $ X $ is an algebraic variety over a field $ k $, then $ \mathop{\rm cohcd} ( X) = n $ if and only if $ X $ is proper over $ k $( Lichtenbaum's theorem, see [3]).

Let $ X $ be a proper scheme over a field $ k $, let $ Y $ be a closed subscheme of $ X $ of codimension $ d $ and let $ U = X \setminus Y $. Then the following statements hold ([2][4]).

If $ Y $ is the set-theoretic complete intersection of ample divisors on $ X $, then

$$ \mathop{\rm cohcd} ( U) \leq d - 1 . $$

If $ X $ is a projective Cohen–Macaulay variety (for instance, a non-singular projective variety) and $ Y $ is zero-dimensional, then $ \mathop{\rm cohcd} ( U) = n - 1 $. The condition $ \mathop{\rm cohcd} ( U) \leq n - 2 $ is equivalent to $ Y $ being connected. If $ X = P ^ {n} $ is a projective space and $ Y $ is connected and has dimension $ \geq 1 $, then

$$ \mathop{\rm cohcd} ( U) < n - 1 . $$

If $ X $ is a complex algebraic variety, then one can consider the cohomological dimension of the corresponding topological space $ X ( C) $. In the general case when $ X $ is a Noetherian scheme, the analogue of cohomological dimension is the notion of the étale cohomological dimension of the scheme $ X $. More precisely, let $ X _ {\textrm{ et } } $ be the étale topology of the Grothendieck scheme $ X $ and let $ l $ be a prime number. By the cohomological $ l $- dimension of the scheme $ X $( or the étale cohomological dimension) one means the number $ \mathop{\rm cd} _ {l} ( X) $ equal to the infimum of those $ i $ for which $ H ^ {j} ( X _ {\textrm{ et } } , {\mathcal F} ) = 0 $ for all $ l $- torsion Abelian sheaves $ {\mathcal F} $ on $ X _ {\textrm{ et } } $ when $ j > i $. If $ X = \mathop{\rm Spec} A $ is an affine scheme, then $ \mathop{\rm cd} _ {l} ( \mathop{\rm Spec} A ) $ is also called the cohomological dimension of the ring $ A $. In particular, if $ A $ is a field, then the notion of $ \mathop{\rm cd} _ {l} ( A) $ is the same as that of the cohomological dimension of a field as studied in the theory of Galois cohomology.

If $ X $ is an algebraic variety of dimension $ n $ over a field $ k $ and if $ l \neq \mathop{\rm char} k $, then $ \mathop{\rm cd} _ {l} ( X) \leq 2 n + \mathop{\rm cd} _ {l} ( k) $. In particular, if $ k $ is a separably closed field, then $ \mathop{\rm cd} _ {l} ( X) \leq 2 n $. If $ X $ is an affine algebraic variety over the separably closed field $ k $, then $ \mathop{\rm cd} _ {l} ( X) \leq \mathop{\rm dim} X $.

Let $ k $ be a field of finite characteristic $ p $; then for any Noetherian scheme $ X $ over $ k $, the inequality

$$ \mathop{\rm cd} _ {p} ( X) \leq \mathop{\rm cohcd} ( X) + 1 $$

holds. In particular, for any Noetherian commutative ring $ A $,

$$ \mathop{\rm cd} _ {p} ( A) \leq 1 . $$

If $ X $ is a quasi-projective algebraic variety over the separably closed field $ k $, then $ \mathop{\rm cd} _ {p} ( X) \leq \mathop{\rm dim} X $, where $ p $ is the characteristic of $ k $.

References

[1] A. Grothendieck, "Sur quelques points d'algèbre homologique" Tohôku Math. J. , 9 (1957) pp. 119–221 MR0102537
[2] R. Hartshorne, "Cohomological dimension of algebraic varieties" Ann. of Math. , 88 (1968) pp. 403–450 MR0232780 Zbl 0169.23302
[3] R. Hartshorne, "Ample subvarieties of algebraic varieties" , Springer (1970) MR0282977 Zbl 0208.48901
[4] R. Hartshorne, "Cohomology of non-complete algebraic varieties" Compositio Math. (1971) pp. 257–264 MR0302649 Zbl 0221.14014
[5] M. Artin (ed.) A. Grothendieck (ed.) J.-L. Verdier (ed.) , Théorie des topos et cohomologie étale des schemas (SGA 4, vol. II, III) , Lect. notes in math. , 270; 305 , Springer (1972–1973) MR1080173 MR1080172 MR0717602 MR0717586 MR0505104 MR0505101

I.V. Dolgachev

Comments

References

[a1] B. Iversen, "Cohomology of sheaves" , Springer (1986) MR0842190 Zbl 0559.55001
How to Cite This Entry:
Cohomological dimension. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cohomological_dimension&oldid=24054
This article was adapted from an original article by E.G. Sklyarenko, I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article