Namespaces
Variants
Actions

Difference between revisions of "Branch index"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
The sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017480/b0174801.png" /> of the orders of the branch points (cf. [[Branch point|Branch point]]) of a compact Riemann surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017480/b0174802.png" />, regarded as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017480/b0174803.png" />-sheeted covering surface over the Riemann sphere, extended over all finite and infinitely-distant branch points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017480/b0174804.png" />. The branch index is connected with the genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017480/b0174805.png" /> and number of sheets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017480/b0174806.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017480/b0174807.png" /> by:
+
<!--
 +
b0174801.png
 +
$#A+1 = 8 n = 0
 +
$#C+1 = 8 : ~/encyclopedia/old_files/data/B017/B.0107480 Branch index
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017480/b0174808.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The sum  $  V= \sum (k - 1) $
 +
of the orders of the branch points (cf. [[Branch point|Branch point]]) of a compact Riemann surface  $  S $,
 +
regarded as an  $  n $-
 +
sheeted covering surface over the Riemann sphere, extended over all finite and infinitely-distant branch points of  $  S $.
 +
The branch index is connected with the genus  $  g $
 +
and number of sheets  $  n $
 +
of  $  S $
 +
by:
 +
 
 +
$$
 +
= 2 (n + g - 1).
 +
$$
  
 
See also [[Riemann surface|Riemann surface]].
 
See also [[Riemann surface|Riemann surface]].
Line 7: Line 28:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 {{MR|0092855}} {{ZBL|0078.06602}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 {{MR|0092855}} {{ZBL|0078.06602}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Mumford, "Algebraic geometry" , '''1. Complex projective varieties''' , Springer (1976) {{MR|0453732}} {{ZBL|0356.14002}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Mumford, "Algebraic geometry" , '''1. Complex projective varieties''' , Springer (1976) {{MR|0453732}} {{ZBL|0356.14002}} </TD></TR></table>

Latest revision as of 06:29, 30 May 2020


The sum $ V= \sum (k - 1) $ of the orders of the branch points (cf. Branch point) of a compact Riemann surface $ S $, regarded as an $ n $- sheeted covering surface over the Riemann sphere, extended over all finite and infinitely-distant branch points of $ S $. The branch index is connected with the genus $ g $ and number of sheets $ n $ of $ S $ by:

$$ V = 2 (n + g - 1). $$

See also Riemann surface.

References

[1] G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 MR0092855 Zbl 0078.06602

Comments

References

[a1] D. Mumford, "Algebraic geometry" , 1. Complex projective varieties , Springer (1976) MR0453732 Zbl 0356.14002
How to Cite This Entry:
Branch index. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branch_index&oldid=23771
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article