Difference between revisions of "De la Vallée-Poussin criterion"
Ulf Rehmann (talk | contribs) m (moved De la Vallee-Poussin criterion to De la Vallée-Poussin criterion over redirect: accented title) |
|||
Line 1: | Line 1: | ||
− | ''for | + | ''for the convergence of Fourier series'' |
− | + | {{MSC|42A20}} | |
− | + | {{TEX|done}} | |
− | + | A criterion first proved by Jordan for the convergence of Fourier series in {{Cite|De}}. | |
− | + | '''Theorem''' | |
+ | Consider a summable $2\pi$ periodic function $f$, a point $x\in \mathbb R$ and the function | ||
+ | \[ | ||
+ | F (t) := \frac{1}{t} \int_0^t \left(f(x+u)+f(x-u) - 2 f(x)\right)\, du \qquad \mbox{for } t>0 | ||
+ | \] | ||
+ | and $F(0)=0$. If $f$ has bounded variation on some interval $[0, \delta]$ with $\delta>0$, then the Fourier series of $f$ converges to $f(x)$ at $x$. | ||
− | The de la Vallée-Poussin criterion is stronger than the [[Dini criterion|Dini criterion]], the [[Dirichlet | + | |
+ | The de la Vallée-Poussin criterion is stronger than the [[Dini criterion|Dini criterion]], the [[Dirichlet theorem|Dirichlet criterion]], and the [[Jordan criterion|Jordan criterion]]. Cp. with Section 3 of chapter III in Volume 1 of {{Cite|Ba}}. | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Ba}}|| N.K. Bary, "A treatise on trigonometric series" , Pergamon, 1964. | ||
+ | |- | ||
+ | |valign="top"|{{Ref|De}}|| Ch.J. de la Vallée-Poussin, "Un nouveau cas de convergence des séries de Fourier" ''Rend. Circ. Mat. Palermo'' , '''31''' (1911) pp. 296–299. | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ed}}|| R. E. Edwards, "Fourier series". Vol. 1. Holt, Rineheart and Winston, 1967. | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Zy}}|| A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988) {{MR|0933759}} {{ZBL|0628.42001}} | ||
+ | |- | ||
+ | |} |
Revision as of 20:00, 16 October 2012
for the convergence of Fourier series
2020 Mathematics Subject Classification: Primary: 42A20 [MSN][ZBL]
A criterion first proved by Jordan for the convergence of Fourier series in [De].
Theorem Consider a summable $2\pi$ periodic function $f$, a point $x\in \mathbb R$ and the function \[ F (t) := \frac{1}{t} \int_0^t \left(f(x+u)+f(x-u) - 2 f(x)\right)\, du \qquad \mbox{for } t>0 \] and $F(0)=0$. If $f$ has bounded variation on some interval $[0, \delta]$ with $\delta>0$, then the Fourier series of $f$ converges to $f(x)$ at $x$.
The de la Vallée-Poussin criterion is stronger than the Dini criterion, the Dirichlet criterion, and the Jordan criterion. Cp. with Section 3 of chapter III in Volume 1 of [Ba].
References
[Ba] | N.K. Bary, "A treatise on trigonometric series" , Pergamon, 1964. |
[De] | Ch.J. de la Vallée-Poussin, "Un nouveau cas de convergence des séries de Fourier" Rend. Circ. Mat. Palermo , 31 (1911) pp. 296–299. |
[Ed] | R. E. Edwards, "Fourier series". Vol. 1. Holt, Rineheart and Winston, 1967. |
[Zy] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) MR0933759 Zbl 0628.42001 |
De la Vallée-Poussin criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=De_la_Vall%C3%A9e-Poussin_criterion&oldid=23242