Namespaces
Variants
Actions

Difference between revisions of "Kronecker-Capelli theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(LaTeX)
Line 2: Line 2:
  
 
A system of equations
 
A system of equations
 +
$$
 +
\begin{array}{ccc}
 +
a_{11} x_1 + \cdots + a_{1n}x_n &=& b_1 \\
 +
\vdots & \vdots & \vdots \\
 +
a_{n1} x_1 + \cdots + a_{nn}x_n &=& b_n
 +
\end{array}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055860/k0558601.png" /></td> </tr></table>
+
is compatible if and only if the [[Rank|rank]] of the coefficient matrix $A = (a_{ij})$ is equal to that of the augmented matrix $\bar A$ obtained from $A$ by adding the column of free terms $b_i$.
 
 
is compatible if and only if the [[Rank|rank]] of the coefficient matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055860/k0558602.png" /> is equal to that of the augmented matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055860/k0558603.png" /> obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055860/k0558604.png" /> by adding the column of free terms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055860/k0558605.png" />.
 
  
 
Kronecker's version of this theorem is contained in his lectures read at the University of Berlin in 1883–1891 (see [[#References|[1]]]). A. Capelli was apparently the first to state the theorem in the above form, using the term  "rank of a matrix"  (see [[#References|[2]]]).
 
Kronecker's version of this theorem is contained in his lectures read at the University of Berlin in 1883–1891 (see [[#References|[1]]]). A. Capelli was apparently the first to state the theorem in the above form, using the term  "rank of a matrix"  (see [[#References|[2]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Kronecker,  "Vorlesungen über die Theorie der Determinanten" , Leipzig  (1903)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Capelli,  "Sopra la compatibilitá o incompatibilitá di più equazioni di primo grado fra picì incognite"  ''Revista di Matematica'' , '''2'''  (1892)  pp. 54–58</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.G. Kurosh,  "Higher algebra" , MIR  (1972)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  L. Kronecker,  "Vorlesungen über die Theorie der Determinanten" , Leipzig  (1903)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  A. Capelli,  "Sopra la compatibilitá o incompatibilitá di più equazioni di primo grado fra picì incognite"  ''Revista di Matematica'' , '''2'''  (1892)  pp. 54–58</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  A.G. Kurosh,  "Higher algebra" , MIR  (1972)  (Translated from Russian)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Revision as of 18:12, 26 October 2014

compatibility criterion for a system of linear equations

A system of equations $$ \begin{array}{ccc} a_{11} x_1 + \cdots + a_{1n}x_n &=& b_1 \\ \vdots & \vdots & \vdots \\ a_{n1} x_1 + \cdots + a_{nn}x_n &=& b_n \end{array} $$

is compatible if and only if the rank of the coefficient matrix $A = (a_{ij})$ is equal to that of the augmented matrix $\bar A$ obtained from $A$ by adding the column of free terms $b_i$.

Kronecker's version of this theorem is contained in his lectures read at the University of Berlin in 1883–1891 (see [1]). A. Capelli was apparently the first to state the theorem in the above form, using the term "rank of a matrix" (see [2]).

References

[1] L. Kronecker, "Vorlesungen über die Theorie der Determinanten" , Leipzig (1903)
[2] A. Capelli, "Sopra la compatibilitá o incompatibilitá di più equazioni di primo grado fra picì incognite" Revista di Matematica , 2 (1892) pp. 54–58
[3] A.G. Kurosh, "Higher algebra" , MIR (1972) (Translated from Russian)
How to Cite This Entry:
Kronecker-Capelli theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kronecker-Capelli_theorem&oldid=22669
This article was adapted from an original article by I.V. Proskuryakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article