Difference between revisions of "Gram-Charlier series"
Ulf Rehmann (talk | contribs) m (moved Gram–Charlier series to Gram-Charlier series: ascii title) |
(refs format) |
||
Line 41: | Line 41: | ||
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473025.png" /> are the central moments of the distribution, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473026.png" />. | Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473025.png" /> are the central moments of the distribution, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473026.png" />. | ||
− | Gram–Charlier series were obtained by J.P. Gram | + | Gram–Charlier series were obtained by J.P. Gram {{Cite|G}} and C.V.L. Charlier {{Cite|Ch}} in their study of functions of the form |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473027.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473027.png" /></td> </tr></table> | ||
Line 52: | Line 52: | ||
====References==== | ====References==== | ||
− | + | {| | |
− | + | |valign="top"|{{Ref|G}}|| J.P. Gram, "Ueber die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadraten" ''J. Reine Angew. Math.'' , '''94''' (1883) pp. 41–73 | |
− | + | |- | |
+ | |valign="top"|{{Ref|Ch}}|| C.V.L. Charlier, "Frequency curves of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044730/g04473037.png" /> in heterograde statistics" ''Ark. Mat. Astr. Fysik'' , '''9''' : 25 (1914) pp. 1–17 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|M}}|| A.K. Mitropol'skii, "Curves of distributions" , Leningrad (1960) (In Russian) | ||
+ | |} | ||
====Comments==== | ====Comments==== | ||
Line 60: | Line 64: | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |valign="top"|{{Ref|Cr}}|| H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) pp. Sect. 17.6 | ||
+ | |} |
Revision as of 06:36, 13 May 2012
2020 Mathematics Subject Classification: Primary: 60E99 [MSN][ZBL]
A series defined by the expression
(1) |
or
(2) |
where is the normalized value of a random variable.
The series (1) is known as the Gram–Charlier series of type ; here
is the -th derivative of , which can be represented as
where are the Chebyshev–Hermite polynomials. The derivatives and the polynomials are orthogonal, owing to which the coefficients can be defined by the basic moments of the given distribution series. If one restricts to the first few terms of the series (1), one obtains
The series (2) is known as a Gram–Charlier series of type ; here
while are polynomials analogous to the polynomials .
If one restricts to the first terms of the series (2), one obtains
Here are the central moments of the distribution, while .
Gram–Charlier series were obtained by J.P. Gram [G] and C.V.L. Charlier [Ch] in their study of functions of the form
These are convenient for the interpolation between the values of the general term of the binomial distribution, where
is the characteristic function of the binomial distribution. The expansion of in powers of yields a Gram–Charlier series of type for , whereas the expansion of in powers of yields a Gram–Charlier series of type .
References
[G] | J.P. Gram, "Ueber die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadraten" J. Reine Angew. Math. , 94 (1883) pp. 41–73 |
[Ch] | C.V.L. Charlier, "Frequency curves of type in heterograde statistics" Ark. Mat. Astr. Fysik , 9 : 25 (1914) pp. 1–17 |
[M] | A.K. Mitropol'skii, "Curves of distributions" , Leningrad (1960) (In Russian) |
Comments
Cf. also Edgeworth series.
References
[Cr] | H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) pp. Sect. 17.6 |
Gram-Charlier series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gram-Charlier_series&oldid=22525