Namespaces
Variants
Actions

Difference between revisions of "Ahlswede-Daykin inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
a1104401.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/A110/A.1100440 Ahlswede\ANDDaykin inequality,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''four-functions inequality''
 
''four-functions inequality''
  
An inequality in which an inequality for four functions on a finite distributive lattice applies also to additive extensions of the functions on lattice subsets. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104401.png" /> be a finite [[Distributive lattice|distributive lattice]] (see also [[FKG inequality|FKG inequality]]), such as the power set of a finite set ordered by proper inclusion. For subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104402.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104403.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104404.png" />, define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104405.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104406.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104407.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104408.png" /> is empty, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a1104409.png" />. Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044010.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044011.png" />.
+
An inequality in which an inequality for four functions on a finite distributive lattice applies also to additive extensions of the functions on lattice subsets. Let $  ( \Gamma, \cls ) $
 +
be a finite [[Distributive lattice|distributive lattice]] (see also [[FKG inequality|FKG inequality]]), such as the power set of a finite set ordered by proper inclusion. For subsets $  A $,  
 +
$  B $
 +
of $  \Gamma $,  
 +
define $  A \lor B = \{ {a \lor b } : {a \in A, b \in B } \} $
 +
and $  A \wedge B = \{ {a \wedge b } : {a \in A, b \in B } \} $.  
 +
If $  A $
 +
or $  B $
 +
is empty, $  A \lor B = A \wedge B = \emptyset $.  
 +
Given $  f : \Gamma \rightarrow \mathbf R $,  
 +
let $  f ( A ) = \sum _ {a \in A }  f ( a ) $.
  
The Ahlswede–Daykin inequality says that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044014.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044015.png" /> map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044016.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044017.png" /> such that
+
The Ahlswede–Daykin inequality says that if $  f _ {1} $,  
 +
$  f _ {2} $,  
 +
$  f _ {3} $,  
 +
and $  f _ {4} $
 +
map $  \Gamma $
 +
into $  [ 0, \infty ) $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044018.png" /></td> </tr></table>
+
$$
 +
f _ {1} ( a ) f _ {2} ( b ) \leq  f _ {3} ( a \lor b ) f _ {4} ( a \wedge b )  \textrm{ for  all  }  a, b \in \Gamma,
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110440/a11044019.png" /></td> </tr></table>
+
$$
 +
f _ {1} ( A ) f _ {2} ( B ) \leq  f _ {3} ( A \lor B ) f _ {4} ( A \wedge B )  \textrm{ for  all  }  A, B \subseteq \Gamma .
 +
$$
  
 
See [[#References|[a1]]] or [[#References|[a2]]], [[#References|[a4]]], [[#References|[a7]]] for a proof.
 
See [[#References|[a1]]] or [[#References|[a2]]], [[#References|[a4]]], [[#References|[a7]]] for a proof.

Revision as of 16:09, 1 April 2020


four-functions inequality

An inequality in which an inequality for four functions on a finite distributive lattice applies also to additive extensions of the functions on lattice subsets. Let $ ( \Gamma, \cls ) $ be a finite distributive lattice (see also FKG inequality), such as the power set of a finite set ordered by proper inclusion. For subsets $ A $, $ B $ of $ \Gamma $, define $ A \lor B = \{ {a \lor b } : {a \in A, b \in B } \} $ and $ A \wedge B = \{ {a \wedge b } : {a \in A, b \in B } \} $. If $ A $ or $ B $ is empty, $ A \lor B = A \wedge B = \emptyset $. Given $ f : \Gamma \rightarrow \mathbf R $, let $ f ( A ) = \sum _ {a \in A } f ( a ) $.

The Ahlswede–Daykin inequality says that if $ f _ {1} $, $ f _ {2} $, $ f _ {3} $, and $ f _ {4} $ map $ \Gamma $ into $ [ 0, \infty ) $ such that

$$ f _ {1} ( a ) f _ {2} ( b ) \leq f _ {3} ( a \lor b ) f _ {4} ( a \wedge b ) \textrm{ for all } a, b \in \Gamma, $$

then

$$ f _ {1} ( A ) f _ {2} ( B ) \leq f _ {3} ( A \lor B ) f _ {4} ( A \wedge B ) \textrm{ for all } A, B \subseteq \Gamma . $$

See [a1] or [a2], [a4], [a7] for a proof.

The inequality is very basic and is used in proofs of other inequalities (cf. [a2], [a3], [a4], [a5], [a7]), including the FKG inequality [a6] and the Fishburn–Shepp inequality [a3], [a8].

See also Correlation inequalities; Holley inequality.

References

[a1] R. Ahlswede, D.E. Daykin, "An inequality for the weights of two families, their unions and intersections" Z. Wahrscheinlichkeitsth. verw. Gebiete , 43 (1978) pp. 183–185
[a2] B. Bollobás, "Combinatorics" , Cambridge Univ. Press (1986)
[a3] P.C. Fishburn, "A correlational inequality for linear extensions of a poset" Order , 1 (1984) pp. 127–137
[a4] P.C. Fishburn, "Correlation in partially ordered sets" Discrete Appl. Math. , 39 (1992) pp. 173–191
[a5] P.C. Fishburn, P.G. Doyle, L.A. Shepp, "The match set of a random permutation has the FKG property" Ann. of Probab. , 16 (1988) pp. 1194–1214
[a6] C.M. Fortuin, P.N. Kasteleyn, J. Ginibre, "Correlation inequalities for some partially ordered sets" Comm. Math. Phys. , 22 (1971) pp. 89–103
[a7] R.L. Graham, "Applications of the FKG inequality and its relatives" , Proc. 12th Internat. Symp. Math. Programming , Springer (1983) pp. 115–131
[a8] L.A. Shepp, "The XYZ conjecture and the FKG inequality" Ann. of Probab. , 10 (1982) pp. 824–827
How to Cite This Entry:
Ahlswede-Daykin inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ahlswede-Daykin_inequality&oldid=22009
This article was adapted from an original article by P.C. Fishburn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article