Namespaces
Variants
Actions

Difference between revisions of "Regression coefficient"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A coefficient of an independent variable in a [[Regression|regression]] equation. For example, in the linear regression equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806301.png" />, connecting the random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806302.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806303.png" />, the regression coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806304.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806305.png" /> are given by
+
<!--
 +
r0806301.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/R080/R.0800630 Regression coefficient
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806306.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806307.png" /> is the [[Correlation coefficient|correlation coefficient]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806308.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r0806309.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r08063010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r08063011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r08063012.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080630/r08063013.png" />. The calculation of estimates for regression coefficients (sample regression coefficients) is a fundamental problem of [[Regression analysis|regression analysis]].
+
A coefficient of an independent variable in a [[Regression|regression]] equation. For example, in the linear regression equation  $  {\mathsf E} ( Y \mid  X = x ) = \beta _ {0} + \beta _ {1} x $,
 +
connecting the random variables  $  Y $
 +
and  $  X $,
 +
the regression coefficients  $  \beta _ {0} $
 +
and  $  \beta _ {1} $
 +
are given by
 +
 
 +
$$
 +
\beta _ {0}  =  m _ {2} - \rho
 +
\frac{\sigma _ {2} }{\sigma _ {1} }
 +
m _ {1} ,\ \
 +
\beta _ {1}  = \rho
 +
\frac{\sigma _ {2} }{\sigma _ {1} }
 +
,
 +
$$
 +
 
 +
where  $  \rho $
 +
is the [[Correlation coefficient|correlation coefficient]] of $  X $
 +
and $  Y $,  
 +
$  m _ {1} = {\mathsf E} X $,  
 +
$  m _ {2} = {\mathsf E} Y $,  
 +
$  \sigma _ {1}  ^ {2} = {\mathsf D} X $,  
 +
and $  \sigma _ {2}  ^ {2} = {\mathsf D} Y $.  
 +
The calculation of estimates for regression coefficients (sample regression coefficients) is a fundamental problem of [[Regression analysis|regression analysis]].

Latest revision as of 08:10, 6 June 2020


A coefficient of an independent variable in a regression equation. For example, in the linear regression equation $ {\mathsf E} ( Y \mid X = x ) = \beta _ {0} + \beta _ {1} x $, connecting the random variables $ Y $ and $ X $, the regression coefficients $ \beta _ {0} $ and $ \beta _ {1} $ are given by

$$ \beta _ {0} = m _ {2} - \rho \frac{\sigma _ {2} }{\sigma _ {1} } m _ {1} ,\ \ \beta _ {1} = \rho \frac{\sigma _ {2} }{\sigma _ {1} } , $$

where $ \rho $ is the correlation coefficient of $ X $ and $ Y $, $ m _ {1} = {\mathsf E} X $, $ m _ {2} = {\mathsf E} Y $, $ \sigma _ {1} ^ {2} = {\mathsf D} X $, and $ \sigma _ {2} ^ {2} = {\mathsf D} Y $. The calculation of estimates for regression coefficients (sample regression coefficients) is a fundamental problem of regression analysis.

How to Cite This Entry:
Regression coefficient. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regression_coefficient&oldid=19256
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article