Difference between revisions of "Young subgroup"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | Let | + | Let $\{1,2,\ldots,n\} = \cup_{i=1}^k \alpha_i$ be a partition of $\{1,2,\ldots,n\}$ into $k$ disjoint subsets. Then the corresponding Young subgroup of $S_n$, the [[symmetric group]] on $n$ letters, is the subgroup |
+ | $$ | ||
+ | S_{\alpha_1} \times \cdots \times S_{\alpha_k} \,, | ||
+ | $$ | ||
+ | where $S_{\alpha_i} = \{ \sigma \in S_n : \sigma(j) = j \ \text{for all}\ j \not\in \alpha_i \}$. Sometimes only the particular cases | ||
+ | $$ | ||
+ | S_{\alpha_1} \times \cdots \times S_{\alpha_k} | ||
+ | $$ | ||
+ | are meant where $\alpha_i = \{\lambda_{i-1} + 1,\ldots, \lambda_i\}$, where $\lambda_0 = 0$ and $\lambda = (\lambda_1,\ldots,\lambda_k)$ is a [[partition]] of the natural number $n$, i.e. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$, $\sum \lambda_i = n$. | ||
− | <table | + | ====References==== |
+ | <table> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G.D. James, "The representation theory of the symmetric groups" , Springer (1978) pp. 13</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Kerber, "Representations of permutation groups" , '''I''' , Springer (1971) pp. 17</TD></TR> | ||
+ | </table> | ||
− | + | {{TEX|done}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 17:28, 22 September 2017
Let $\{1,2,\ldots,n\} = \cup_{i=1}^k \alpha_i$ be a partition of $\{1,2,\ldots,n\}$ into $k$ disjoint subsets. Then the corresponding Young subgroup of $S_n$, the symmetric group on $n$ letters, is the subgroup $$ S_{\alpha_1} \times \cdots \times S_{\alpha_k} \,, $$ where $S_{\alpha_i} = \{ \sigma \in S_n : \sigma(j) = j \ \text{for all}\ j \not\in \alpha_i \}$. Sometimes only the particular cases $$ S_{\alpha_1} \times \cdots \times S_{\alpha_k} $$ are meant where $\alpha_i = \{\lambda_{i-1} + 1,\ldots, \lambda_i\}$, where $\lambda_0 = 0$ and $\lambda = (\lambda_1,\ldots,\lambda_k)$ is a partition of the natural number $n$, i.e. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$, $\sum \lambda_i = n$.
References
[a1] | G.D. James, "The representation theory of the symmetric groups" , Springer (1978) pp. 13 |
[a2] | A. Kerber, "Representations of permutation groups" , I , Springer (1971) pp. 17 |
Young subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Young_subgroup&oldid=19253