|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | f1101501.png |
| + | $#A+1 = 137 n = 0 |
| + | $#C+1 = 137 : ~/encyclopedia/old_files/data/F110/F.1100150 Forking |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''(in logic)'' | | ''(in logic)'' |
| | | |
| A notion introduced by S. Shelah [[#References|[a8]]]. The general theory of forking is also known as [[Stability theory|stability theory]], but more commonly, non-forking (the negation of forking) is defined as a certain well-behaved relation between a type and its extension (cf. [[Types, theory of|Types, theory of]]). | | A notion introduced by S. Shelah [[#References|[a8]]]. The general theory of forking is also known as [[Stability theory|stability theory]], but more commonly, non-forking (the negation of forking) is defined as a certain well-behaved relation between a type and its extension (cf. [[Types, theory of|Types, theory of]]). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101501.png" /> be a sufficiently saturated model of a theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101502.png" /> in a countable first-order language (cf. also [[Formal language|Formal language]]; [[Model (in logic)|Model (in logic)]]; [[Model theory|Model theory]]). Given an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101503.png" />-tuple of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101504.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101505.png" />, a collection of formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101506.png" /> with parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101507.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f1101508.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015010.png" />-type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015011.png" />. For simplicity, only <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015012.png" />-types will be considered; these are simply called types over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015013.png" />. A complete type is one which is maximal consistent. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015014.png" /> be the set of complete types over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015015.png" />. | + | Let $ M $ |
| + | be a sufficiently saturated model of a theory $ T $ |
| + | in a countable first-order language (cf. also [[Formal language|Formal language]]; [[Model (in logic)|Model (in logic)]]; [[Model theory|Model theory]]). Given an $ n $- |
| + | tuple of variables $ {\overline{x}\; } $ |
| + | and $ A \subset M $, |
| + | a collection of formulas $ \phi ( {\overline{x}\; } , {\overline{a}\; } ) $ |
| + | with parameters $ {\overline{a}\; } $ |
| + | in $ A $ |
| + | is called an $ n $- |
| + | type over $ A $. |
| + | For simplicity, only $ 1 $- |
| + | types will be considered; these are simply called types over $ A $. |
| + | A complete type is one which is maximal consistent. Let $ S ( A ) $ |
| + | be the set of complete types over $ A $. |
| | | |
− | Given a type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015016.png" /> and a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015017.png" />, one defines the Morley <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015019.png" />-rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015021.png" />, inductively as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015022.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015023.png" /> is consistent, for each natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015025.png" /> if for every finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015026.png" /> and natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015027.png" /> there are collections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015029.png" />-formulas (with parameters from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015030.png" />) such that: | + | Given a type $ t = t ( x ) $ |
| + | and a formula $ \phi = \phi ( x, {\overline{y}\; } ) $, |
| + | one defines the Morley $ \phi $- |
| + | rank of $ t $, |
| + | $ \phi roman \AAh { \mathop{\rm rk} } ( t ) $, |
| + | inductively as follows: $ \phi roman \AAh { \mathop{\rm rk} } ( t ) \geq 0 $ |
| + | if $ t $ |
| + | is consistent, for each natural number $ n $, |
| + | $ \phi roman \AAh { \mathop{\rm rk} } ( t ) \geq n + 1 $ |
| + | if for every finite $ s \subset t $ |
| + | and natural number $ m $ |
| + | there are collections $ p _ {1} \dots p _ {m} $ |
| + | of $ \phi $- |
| + | formulas (with parameters from $ M $) |
| + | such that: |
| | | |
− | i) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015033.png" /> are contradictory, i.e. for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015035.png" /> belongs to one of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015037.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015038.png" /> belongs to the other; | + | i) for $ i \neq j $, |
| + | $ p _ {i} $ |
| + | and $ p _ {j} $ |
| + | are contradictory, i.e. for some $ {\overline{a}\; } $, |
| + | $ \phi ( x, {\overline{a}\; } ) $ |
| + | belongs to one of $ p _ {i} $ |
| + | and $ p _ {j} $, |
| + | and $ \neg \phi ( x, {\overline{a}\; } ) $ |
| + | belongs to the other; |
| | | |
− | ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015039.png" />. | + | ii) $ \phi roman \AAh { \mathop{\rm rk} } ( s \cup p _ {i} ) \geq n $. |
| | | |
− | Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015040.png" /> is stable, i.e. for some infinite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015041.png" />, whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015042.png" />, then also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015043.png" />. (Equivalently, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015044.png" /> for every type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015045.png" /> and formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015046.png" />.) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015049.png" /> be such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015050.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015051.png" /> is called a non-forking extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015052.png" />, or it is said that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015053.png" /> does not fork over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015054.png" />, if for every formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015055.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015056.png" />, | + | Assume that $ T $ |
| + | is stable, i.e. for some infinite $ \kappa $, |
| + | whenever $ | A | \leq \kappa $, |
| + | then also $ | {S ( A ) } | \leq \kappa $. |
| + | (Equivalently, $ \phi roman \AAh { \mathop{\rm rk} } ( t ) < \infty $ |
| + | for every type $ t $ |
| + | and formula $ \phi $.) |
| + | Let $ A \subset B $, |
| + | $ t \in S ( A ) $, |
| + | $ u \in S ( B ) $ |
| + | be such that $ u \supset t $. |
| + | Then $ u $ |
| + | is called a non-forking extension of $ t $, |
| + | or it is said that $ u $ |
| + | does not fork over $ A $, |
| + | if for every formula $ \phi $ |
| + | with $ \phi ( x, {\overline{b}\; } ) \in u $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015057.png" /></td> </tr></table>
| + | $$ |
| + | \phi roman \AAh { \mathop{\rm rk} } ( p ) = \phi roman \AAh { \mathop{\rm rk} } ( p \cap \phi ( x, {\overline{b}\; } ) ) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015058.png" /> denotes the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015059.png" />. | + | where $ p \cap \phi ( x, {\overline{b}\; } ) $ |
| + | denotes the set $ \{ {\theta \wedge \phi ( x, {\overline{b}\; } ) } : {\theta \in p } \} $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015060.png" /> mean that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015061.png" /> is a non-forking extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015062.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015063.png" /> is the unique relation on complete types satisfying the following Lascar axioms: | + | Let $ t \Sbs u $ |
| + | mean that $ u $ |
| + | is a non-forking extension of $ t $. |
| + | Then $ \Sbs $ |
| + | is the unique relation on complete types satisfying the following Lascar axioms: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015064.png" /> is preserved under automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015065.png" />; | + | 1) $ \Sbs $ |
| + | is preserved under automorphisms of $ M $; |
| | | |
− | 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015066.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015067.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015069.png" />; | + | 2) if $ t \subset u \subset v $, |
| + | then $ t \Sbs v $ |
| + | if and only if $ t \Sbs u $ |
| + | and $ u \Sbs v $; |
| | | |
− | 3) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015071.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015072.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015073.png" />; | + | 3) for any $ t \in S ( A ) $ |
| + | and $ B \supset A $ |
| + | there exists a $ u \in S ( B ) $ |
| + | such that $ t \Sbs u $; |
| | | |
− | 4) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015074.png" /> there exist countable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015075.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015076.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015077.png" /> is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015078.png" /> to formulas with parameters from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015079.png" />; | + | 4) for any $ t \in S ( A ) $ |
| + | there exist countable $ A _ {0} \subset A $ |
| + | and $ t _ {0} \Sbs t $, |
| + | where $ t _ {0} $ |
| + | is the restriction of $ t $ |
| + | to formulas with parameters from $ A _ {0} $; |
| | | |
− | 5) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015081.png" />, | + | 5) for any $ t \in S ( A ) $ |
| + | and $ A \subset B $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015082.png" /></td> </tr></table>
| + | $$ |
| + | \left | {\left \{ {u \in S ( B ) } : {t \Sbs u } \right \} } \right | \leq 2 ^ {\aleph _ {0} } . |
| + | $$ |
| | | |
| The ultrapower construction (cf. also [[Ultrafilter|Ultrafilter]]) gives a systematic way of building non-forking extensions [[#References|[a4]]]. | | The ultrapower construction (cf. also [[Ultrafilter|Ultrafilter]]) gives a systematic way of building non-forking extensions [[#References|[a4]]]. |
| | | |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015083.png" /> one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015084.png" /> for the type in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015085.png" /> realized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015086.png" />. Given a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015087.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015088.png" />, the following important symmetry property holds: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015089.png" /> does not fork over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015090.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015091.png" /> does not fork over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015092.png" />. If either holds, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015093.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015094.png" /> are independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015095.png" />, and this notion is viewed as a generalization of [[Algebraic independence|algebraic independence]]. | + | For $ c \in M $ |
| + | one writes $ { \mathop{\rm tp} } ( c/A ) $ |
| + | for the type in $ S ( A ) $ |
| + | realized by $ c $. |
| + | Given a set $ A $ |
| + | and $ b,c \in M $, |
| + | the following important symmetry property holds: $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ |
| + | does not fork over $ A $ |
| + | if and only if $ { \mathop{\rm tp} } ( c/A \cup \{ b \} ) $ |
| + | does not fork over $ A $. |
| + | If either holds, one says that $ b $, |
| + | $ c $ |
| + | are independent over $ A $, |
| + | and this notion is viewed as a generalization of [[Algebraic independence|algebraic independence]]. |
| | | |
− | Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015096.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015097.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015098.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f11015099.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150100.png" /> is an heir of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150101.png" /> if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150102.png" /> (with parameters in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150103.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150104.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150105.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150106.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150107.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150108.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150109.png" />. One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150110.png" /> is definable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150111.png" /> if for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150112.png" /> there is a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150113.png" /> with parameters from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150114.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150115.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150116.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150117.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150118.png" />. | + | Given $ t \in S ( A ) $, |
| + | $ B \supset A $, |
| + | $ u \in S ( B ) $, |
| + | and $ u \supset t $, |
| + | one says that $ u $ |
| + | is an heir of $ t $ |
| + | if for every $ \phi ( x, {\overline{y}\; } ) $( |
| + | with parameters in $ A $), |
| + | $ \phi ( x, {\overline{b}\; } ) \in u $ |
| + | for some $ {\overline{b}\; } $ |
| + | in $ B $ |
| + | if and only if $ \phi ( x, {\overline{a}\; } ) \in t $ |
| + | for some $ {\overline{a}\; } $ |
| + | in $ A $. |
| + | One says that $ u $ |
| + | is definable over $ A $ |
| + | if for every $ \phi ( x, {\overline{y}\; } ) $ |
| + | there is a formula $ \theta ( {\overline{y}\; } ) $ |
| + | with parameters from $ A $ |
| + | such that for any $ {\overline{b}\; } $ |
| + | in $ B $, |
| + | $ \phi ( x, {\overline{b}\; } ) \in u $ |
| + | if and only if $ M \vDash \theta ( {\overline{b}\; } ) $. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150119.png" /> is said to be a coheir of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150120.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150121.png" /> is finitely satisfiable in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150122.png" />. So, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150123.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150124.png" /> is an heir of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150125.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150126.png" /> is a coheir of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150127.png" />.
| + | $ u $ |
| + | is said to be a coheir of $ t $ |
| + | if $ u $ |
| + | is finitely satisfiable in $ A $. |
| + | So, for $ b,c \in M $, |
| + | $ { \mathop{\rm tp} } ( c/ A \cup \{ b \} ) $ |
| + | is an heir of $ { \mathop{\rm tp} } ( c/A ) $ |
| + | if and only if $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ |
| + | is a coheir of $ { \mathop{\rm tp} } ( b/A ) $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150128.png" /> is an elementary submodel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150129.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150130.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150131.png" /> is an heir of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150132.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150133.png" /> is definable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150134.png" />. In particular, in that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150135.png" /> has a unique non-forking extension over any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150136.png" />. Then it follows from the forking symmetry that when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150137.png" /> is an elementary submodel, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150138.png" /> being a coheir of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110150/f110150139.png" /> is equivalent to being an heir. | + | If $ A $ |
| + | is an elementary submodel of $ M $, |
| + | then $ u \Sps t $ |
| + | if and only if $ u $ |
| + | is an heir of $ t $ |
| + | if and only if $ u $ |
| + | is definable over $ A $. |
| + | In particular, in that case $ t $ |
| + | has a unique non-forking extension over any $ B \supset A $. |
| + | Then it follows from the forking symmetry that when $ A $ |
| + | is an elementary submodel, $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ |
| + | being a coheir of $ { \mathop{\rm tp} } ( b/A ) $ |
| + | is equivalent to being an heir. |
| | | |
| For a comprehensive introduction of forking see [[#References|[a1]]], [[#References|[a2]]], [[#References|[a4]]], [[#References|[a5]]], and [[#References|[a9]]]. For applications in algebra, see [[#References|[a7]]] and [[#References|[a6]]]. | | For a comprehensive introduction of forking see [[#References|[a1]]], [[#References|[a2]]], [[#References|[a4]]], [[#References|[a5]]], and [[#References|[a9]]]. For applications in algebra, see [[#References|[a7]]] and [[#References|[a6]]]. |
(in logic)
A notion introduced by S. Shelah [a8]. The general theory of forking is also known as stability theory, but more commonly, non-forking (the negation of forking) is defined as a certain well-behaved relation between a type and its extension (cf. Types, theory of).
Let $ M $
be a sufficiently saturated model of a theory $ T $
in a countable first-order language (cf. also Formal language; Model (in logic); Model theory). Given an $ n $-
tuple of variables $ {\overline{x}\; } $
and $ A \subset M $,
a collection of formulas $ \phi ( {\overline{x}\; } , {\overline{a}\; } ) $
with parameters $ {\overline{a}\; } $
in $ A $
is called an $ n $-
type over $ A $.
For simplicity, only $ 1 $-
types will be considered; these are simply called types over $ A $.
A complete type is one which is maximal consistent. Let $ S ( A ) $
be the set of complete types over $ A $.
Given a type $ t = t ( x ) $
and a formula $ \phi = \phi ( x, {\overline{y}\; } ) $,
one defines the Morley $ \phi $-
rank of $ t $,
$ \phi roman \AAh { \mathop{\rm rk} } ( t ) $,
inductively as follows: $ \phi roman \AAh { \mathop{\rm rk} } ( t ) \geq 0 $
if $ t $
is consistent, for each natural number $ n $,
$ \phi roman \AAh { \mathop{\rm rk} } ( t ) \geq n + 1 $
if for every finite $ s \subset t $
and natural number $ m $
there are collections $ p _ {1} \dots p _ {m} $
of $ \phi $-
formulas (with parameters from $ M $)
such that:
i) for $ i \neq j $,
$ p _ {i} $
and $ p _ {j} $
are contradictory, i.e. for some $ {\overline{a}\; } $,
$ \phi ( x, {\overline{a}\; } ) $
belongs to one of $ p _ {i} $
and $ p _ {j} $,
and $ \neg \phi ( x, {\overline{a}\; } ) $
belongs to the other;
ii) $ \phi roman \AAh { \mathop{\rm rk} } ( s \cup p _ {i} ) \geq n $.
Assume that $ T $
is stable, i.e. for some infinite $ \kappa $,
whenever $ | A | \leq \kappa $,
then also $ | {S ( A ) } | \leq \kappa $.
(Equivalently, $ \phi roman \AAh { \mathop{\rm rk} } ( t ) < \infty $
for every type $ t $
and formula $ \phi $.)
Let $ A \subset B $,
$ t \in S ( A ) $,
$ u \in S ( B ) $
be such that $ u \supset t $.
Then $ u $
is called a non-forking extension of $ t $,
or it is said that $ u $
does not fork over $ A $,
if for every formula $ \phi $
with $ \phi ( x, {\overline{b}\; } ) \in u $,
$$
\phi roman \AAh { \mathop{\rm rk} } ( p ) = \phi roman \AAh { \mathop{\rm rk} } ( p \cap \phi ( x, {\overline{b}\; } ) ) ,
$$
where $ p \cap \phi ( x, {\overline{b}\; } ) $
denotes the set $ \{ {\theta \wedge \phi ( x, {\overline{b}\; } ) } : {\theta \in p } \} $.
Let $ t \Sbs u $
mean that $ u $
is a non-forking extension of $ t $.
Then $ \Sbs $
is the unique relation on complete types satisfying the following Lascar axioms:
1) $ \Sbs $
is preserved under automorphisms of $ M $;
2) if $ t \subset u \subset v $,
then $ t \Sbs v $
if and only if $ t \Sbs u $
and $ u \Sbs v $;
3) for any $ t \in S ( A ) $
and $ B \supset A $
there exists a $ u \in S ( B ) $
such that $ t \Sbs u $;
4) for any $ t \in S ( A ) $
there exist countable $ A _ {0} \subset A $
and $ t _ {0} \Sbs t $,
where $ t _ {0} $
is the restriction of $ t $
to formulas with parameters from $ A _ {0} $;
5) for any $ t \in S ( A ) $
and $ A \subset B $,
$$
\left | {\left \{ {u \in S ( B ) } : {t \Sbs u } \right \} } \right | \leq 2 ^ {\aleph _ {0} } .
$$
The ultrapower construction (cf. also Ultrafilter) gives a systematic way of building non-forking extensions [a4].
For $ c \in M $
one writes $ { \mathop{\rm tp} } ( c/A ) $
for the type in $ S ( A ) $
realized by $ c $.
Given a set $ A $
and $ b,c \in M $,
the following important symmetry property holds: $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $
does not fork over $ A $
if and only if $ { \mathop{\rm tp} } ( c/A \cup \{ b \} ) $
does not fork over $ A $.
If either holds, one says that $ b $,
$ c $
are independent over $ A $,
and this notion is viewed as a generalization of algebraic independence.
Given $ t \in S ( A ) $,
$ B \supset A $,
$ u \in S ( B ) $,
and $ u \supset t $,
one says that $ u $
is an heir of $ t $
if for every $ \phi ( x, {\overline{y}\; } ) $(
with parameters in $ A $),
$ \phi ( x, {\overline{b}\; } ) \in u $
for some $ {\overline{b}\; } $
in $ B $
if and only if $ \phi ( x, {\overline{a}\; } ) \in t $
for some $ {\overline{a}\; } $
in $ A $.
One says that $ u $
is definable over $ A $
if for every $ \phi ( x, {\overline{y}\; } ) $
there is a formula $ \theta ( {\overline{y}\; } ) $
with parameters from $ A $
such that for any $ {\overline{b}\; } $
in $ B $,
$ \phi ( x, {\overline{b}\; } ) \in u $
if and only if $ M \vDash \theta ( {\overline{b}\; } ) $.
$ u $
is said to be a coheir of $ t $
if $ u $
is finitely satisfiable in $ A $.
So, for $ b,c \in M $,
$ { \mathop{\rm tp} } ( c/ A \cup \{ b \} ) $
is an heir of $ { \mathop{\rm tp} } ( c/A ) $
if and only if $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $
is a coheir of $ { \mathop{\rm tp} } ( b/A ) $.
If $ A $
is an elementary submodel of $ M $,
then $ u \Sps t $
if and only if $ u $
is an heir of $ t $
if and only if $ u $
is definable over $ A $.
In particular, in that case $ t $
has a unique non-forking extension over any $ B \supset A $.
Then it follows from the forking symmetry that when $ A $
is an elementary submodel, $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $
being a coheir of $ { \mathop{\rm tp} } ( b/A ) $
is equivalent to being an heir.
For a comprehensive introduction of forking see [a1], [a2], [a4], [a5], and [a9]. For applications in algebra, see [a7] and [a6].
The techniques of forking have been extended to unstable theories. In [a2], this is done by considering only types that satisfy stable conditions. In [a3], types are viewed as probability measures and forking is treated as a special kind of measure extension. The stability assumption is then weakened to theories that do not have the independence property.
References
[a1] | J.T. Baldwin, "Fundamentals of stability theory" , Springer (1987) |
[a2] | V. Harnik, L. Harrington, "Fundamentals of forking" Ann. Pure and Applied Logic , 26 (1984) pp. 245–286 |
[a3] | H.J. Keisler, "Measures and forking" Ann. Pure and Applied Logic , 34 (1987) pp. 119–169 |
[a4] | D. Lascar, B. Poizat, "An introduction to forking" J. Symb. Logic , 44 (1979) pp. 330–350 |
[a5] | A. Pillay, "Introduction to stability theory" , Oxford Univ. Press (1983) |
[a6] | A. Pillay, "The geometry of forking and groups of finite Morley rank" J. Symb. Logic , 60 (1995) pp. 1251–1259 |
[a7] | M. Prest, "Model theory and modules" , Cambridge Univ. Press (1988) |
[a8] | S. Shelah, "Classification theory and the number of non-isomorphic models" , North-Holland (1990) (Edition: Revised) |
[a9] | M. Makkai, "A survey of basic stability theory" Israel J. Math. , 49 (1984) pp. 181–238 |