Namespaces
Variants
Actions

Difference between revisions of "Affine pseudo-distance"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110801.png" />, equal to the modulus of the vector product of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110802.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110803.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110804.png" /> is an arbitrary point in an [[Equi-affine plane|equi-affine plane]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110805.png" /> is a point on a plane curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110806.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110807.png" /> is the affine parameter of the curve and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110808.png" /> is the tangent vector at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a0110809.png" />. This number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108010.png" /> is called the affine pseudo-distance from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108011.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108013.png" /> is held fixed, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108014.png" /> is moved along the curve, the affine pseudo-distance from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108015.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108016.png" /> will assume a stationary value if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108017.png" /> lies on the affine normal of the curve at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a011/a011080/a01108018.png" />. An affine pseudo-distance in an equi-affine space can be defined in a similar manner for a given hypersurface.
+
<!--
 +
a0110801.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/A011/A.0101080 Affine pseudo\AAhdistance
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The number  $  \rho = ( \overline{ {MM  ^ {*} }}\; , \mathbf t ) $,  
 +
equal to the modulus of the vector product of the vectors $  \overline{ {MM  ^ {*} }}\; $
 +
and $  \mathbf t $,  
 +
where $  M  ^ {*} $
 +
is an arbitrary point in an [[Equi-affine plane|equi-affine plane]], $  M $
 +
is a point on a plane curve $  \mathbf r = \mathbf r (s) $,  
 +
$  s $
 +
is the affine parameter of the curve and $  \mathbf t = d \mathbf r / ds $
 +
is the tangent vector at the point $  M $.  
 +
This number $  \rho $
 +
is called the affine pseudo-distance from $  M  ^ {*} $
 +
to $  M $.  
 +
If $  M  ^ {*} $
 +
is held fixed, while $  M $
 +
is moved along the curve, the affine pseudo-distance from $  M  ^ {*} $
 +
to $  M $
 +
will assume a stationary value if and only if $  M  ^ {*} $
 +
lies on the affine normal of the curve at $  M $.  
 +
An affine pseudo-distance in an equi-affine space can be defined in a similar manner for a given hypersurface.

Latest revision as of 16:09, 1 April 2020


The number $ \rho = ( \overline{ {MM ^ {*} }}\; , \mathbf t ) $, equal to the modulus of the vector product of the vectors $ \overline{ {MM ^ {*} }}\; $ and $ \mathbf t $, where $ M ^ {*} $ is an arbitrary point in an equi-affine plane, $ M $ is a point on a plane curve $ \mathbf r = \mathbf r (s) $, $ s $ is the affine parameter of the curve and $ \mathbf t = d \mathbf r / ds $ is the tangent vector at the point $ M $. This number $ \rho $ is called the affine pseudo-distance from $ M ^ {*} $ to $ M $. If $ M ^ {*} $ is held fixed, while $ M $ is moved along the curve, the affine pseudo-distance from $ M ^ {*} $ to $ M $ will assume a stationary value if and only if $ M ^ {*} $ lies on the affine normal of the curve at $ M $. An affine pseudo-distance in an equi-affine space can be defined in a similar manner for a given hypersurface.

How to Cite This Entry:
Affine pseudo-distance. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Affine_pseudo-distance&oldid=19221
This article was adapted from an original article by A.P. Shirokov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article