Difference between revisions of "Polydisc"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0735701.png | ||
+ | $#A+1 = 28 n = 0 | ||
+ | $#C+1 = 28 : ~/encyclopedia/old_files/data/P073/P.0703570 Polydisc, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''polycylinder'' | ''polycylinder'' | ||
A region | A region | ||
− | + | $$ | |
+ | \Delta = \Delta ( a = ( a _ {1} \dots a _ {n} ),\ | ||
+ | r = ( r _ {1} \dots r _ {n} )) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \{ z = ( z _ {1} \dots z _ {n} ) \in \mathbf C ^ {n} : | z _ \nu - a _ \nu | < r _ \nu , \nu = 1 \dots n \} | ||
+ | $$ | ||
− | in a complex space | + | in a complex space $ \mathbf C ^ {n} $, |
+ | $ n \geq 1 $, | ||
+ | which is the topological product of $ n $ | ||
+ | discs | ||
− | + | $$ | |
+ | \Delta = \Delta _ {1} \times \dots \times \Delta _ {n} , | ||
+ | $$ | ||
− | + | $$ | |
+ | \Delta _ \nu = \{ z _ \nu \in \mathbf C : | z _ \nu - a _ \nu | < r _ \nu \} ,\ \nu = 1 \dots n . | ||
+ | $$ | ||
− | The point | + | The point $ a = ( a _ {1} \dots a _ {n} ) \in \mathbf C ^ {n} $ |
+ | is the centre of the polydisc $ \Delta $, | ||
+ | $ r = ( r _ {1} \dots r _ {n} ) $, | ||
+ | $ r _ \nu > 0 $, | ||
+ | $ \nu = 1 \dots n $, | ||
+ | is its polyradius. With $ a = 0 $, | ||
+ | $ r = ( 1 \dots 1 ) $ | ||
+ | one obtains the unit polydisc. The distinguished boundary of $ \Delta $ | ||
+ | is the set | ||
− | + | $$ | |
+ | T = T( a, r) = \{ {z \in \mathbf C ^ {n} } : { | ||
+ | | z _ \nu - a _ \nu | = r _ \nu , \nu = 1 \dots n } \} | ||
+ | , | ||
+ | $$ | ||
− | which is a part of its complete topological boundary | + | which is a part of its complete topological boundary $ \partial \Delta $. |
+ | A polydisc is a complete [[Reinhardt domain|Reinhardt domain]]. | ||
− | A natural generalization of the concept of a polydisc is that of a polyregion (polycircular region, generalized polycylinder) | + | A natural generalization of the concept of a polydisc is that of a polyregion (polycircular region, generalized polycylinder) $ D = D _ {1} \times \dots \times D _ {n} $, |
+ | which is the topological product of, in general multiply-connected, regions $ D _ \nu \subset \mathbf C $, | ||
+ | $ \nu = 1 \dots n $. | ||
+ | The boundary $ \Gamma = \partial D $ | ||
+ | of a polyregion $ D $ | ||
+ | consists of $ n $ | ||
+ | sets of dimension $ 2n - 1 $: | ||
− | + | $$ | |
− | + | \Gamma _ \nu = \ | |
− | + | \{ {z \in \mathbf C ^ {n} } : {z _ \nu \in \partial D _ \nu ,\ | |
− | + | z _ \mu \in \overline{D}\; _ \mu , \mu \neq \nu } \} | |
− | + | ,\ \ | |
+ | \nu = 1 \dots n, | ||
+ | $$ | ||
+ | the common part of which is the $ n $- | ||
+ | dimensional distinguished boundary of $ D $: | ||
+ | $$ | ||
+ | T = \partial D _ {1} \times \dots \times \partial D _ {n} = \ | ||
+ | \{ {z \in \mathbf C ^ {n} } : { | ||
+ | z _ \nu \in \partial D _ \nu , \nu = 1 \dots n } \} | ||
+ | . | ||
+ | $$ | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Function theory in polydiscs" , Benjamin (1969)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Function theory in polydiscs" , Benjamin (1969)</TD></TR></table> |
Latest revision as of 08:06, 6 June 2020
polycylinder
A region
$$ \Delta = \Delta ( a = ( a _ {1} \dots a _ {n} ),\ r = ( r _ {1} \dots r _ {n} )) = $$
$$ = \ \{ z = ( z _ {1} \dots z _ {n} ) \in \mathbf C ^ {n} : | z _ \nu - a _ \nu | < r _ \nu , \nu = 1 \dots n \} $$
in a complex space $ \mathbf C ^ {n} $, $ n \geq 1 $, which is the topological product of $ n $ discs
$$ \Delta = \Delta _ {1} \times \dots \times \Delta _ {n} , $$
$$ \Delta _ \nu = \{ z _ \nu \in \mathbf C : | z _ \nu - a _ \nu | < r _ \nu \} ,\ \nu = 1 \dots n . $$
The point $ a = ( a _ {1} \dots a _ {n} ) \in \mathbf C ^ {n} $ is the centre of the polydisc $ \Delta $, $ r = ( r _ {1} \dots r _ {n} ) $, $ r _ \nu > 0 $, $ \nu = 1 \dots n $, is its polyradius. With $ a = 0 $, $ r = ( 1 \dots 1 ) $ one obtains the unit polydisc. The distinguished boundary of $ \Delta $ is the set
$$ T = T( a, r) = \{ {z \in \mathbf C ^ {n} } : { | z _ \nu - a _ \nu | = r _ \nu , \nu = 1 \dots n } \} , $$
which is a part of its complete topological boundary $ \partial \Delta $. A polydisc is a complete Reinhardt domain.
A natural generalization of the concept of a polydisc is that of a polyregion (polycircular region, generalized polycylinder) $ D = D _ {1} \times \dots \times D _ {n} $, which is the topological product of, in general multiply-connected, regions $ D _ \nu \subset \mathbf C $, $ \nu = 1 \dots n $. The boundary $ \Gamma = \partial D $ of a polyregion $ D $ consists of $ n $ sets of dimension $ 2n - 1 $:
$$ \Gamma _ \nu = \ \{ {z \in \mathbf C ^ {n} } : {z _ \nu \in \partial D _ \nu ,\ z _ \mu \in \overline{D}\; _ \mu , \mu \neq \nu } \} ,\ \ \nu = 1 \dots n, $$
the common part of which is the $ n $- dimensional distinguished boundary of $ D $:
$$ T = \partial D _ {1} \times \dots \times \partial D _ {n} = \ \{ {z \in \mathbf C ^ {n} } : { z _ \nu \in \partial D _ \nu , \nu = 1 \dots n } \} . $$
Comments
References
[a1] | W. Rudin, "Function theory in polydiscs" , Benjamin (1969) |
Polydisc. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polydisc&oldid=19171