Difference between revisions of "Boks integral"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0168001.png | ||
+ | $#A+1 = 25 n = 0 | ||
+ | $#C+1 = 25 : ~/encyclopedia/old_files/data/B016/B.0106800 Boks integral | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | One of the generalizations of the Lebesgue integral, proposed by A. Denjoy (1919) and studied in detail by T.J. Boks (1921). A real-valued function $ f $ | |
+ | on a segment $ [a, b] $ | ||
+ | is periodically extended (with period length $ b - a $) | ||
+ | to the entire straight line. For an arbitrary subdivision $ a = x _ {0} < x _ {1} < \dots < x _ {n} = b $ | ||
+ | of $ [a, b] $, | ||
+ | for an arbitrary selection of points $ \overline \xi \; = \{ \xi _ {i} \} _ {1} ^ {n} $, | ||
+ | $ \xi _ {i} \in [x _ {i-1 } , x _ {i} ] $, | ||
+ | and an arbitrary $ t $, | ||
+ | the following sum is constructed: | ||
− | The Boks integral represents a considerable extension of the Lebesgue integral: Any summable function is | + | $$ |
+ | I(t) = \sum _ { i=1 } ^ { n } | ||
+ | f( \xi _ {i} +t) | ||
+ | [x _ {i} -x _ {i-1} ]. | ||
+ | $$ | ||
+ | |||
+ | If, for $ \rho = \max _ {i} (x _ {i} - x _ {i-1 } ) \rightarrow 0 $, | ||
+ | $ I(t) $ | ||
+ | converges in measure to a definite limit $ I $, | ||
+ | the number $ I $ | ||
+ | is said to be the Boks integral ( $ B $- | ||
+ | integral) of $ f $ | ||
+ | over $ [a, b] $. | ||
+ | Thus, the Boks integral is an integral of Riemann type and is a generalization of the Riemann integral. | ||
+ | |||
+ | The Boks integral represents a considerable extension of the Lebesgue integral: Any summable function is $ B $- | ||
+ | integrable and these integrals coincide, but there exist non-summable $ B $- | ||
+ | integrable functions; in particular, if $ g $ | ||
+ | is the function conjugate with a summable function $ f $, | ||
+ | then it is $ B $- | ||
+ | integrable and the coefficients of the series conjugate with the Fourier series of $ f $ | ||
+ | are the coefficients of the respective Fourier series (in the sense of $ B $- | ||
+ | integration) of $ g $( | ||
+ | A.N. Kolmogorov). The theory of the Boks integral was not further developed, since the [[A-integral| $ A $- | ||
+ | integral]] proved to be more convenient for the integration of functions conjugate with summable functions. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> T.J. Boks, "Sur les rapports entre les méthodes de l'intégration de Riemann et de Lebesque" ''Rend. Circ. Mat. Palermo (2)'' , '''45''' (1921) pp. 211–264</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> T.J. Boks, "Sur les rapports entre les méthodes de l'intégration de Riemann et de Lebesque" ''Rend. Circ. Mat. Palermo (2)'' , '''45''' (1921) pp. 211–264</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> |
Latest revision as of 10:59, 29 May 2020
One of the generalizations of the Lebesgue integral, proposed by A. Denjoy (1919) and studied in detail by T.J. Boks (1921). A real-valued function $ f $
on a segment $ [a, b] $
is periodically extended (with period length $ b - a $)
to the entire straight line. For an arbitrary subdivision $ a = x _ {0} < x _ {1} < \dots < x _ {n} = b $
of $ [a, b] $,
for an arbitrary selection of points $ \overline \xi \; = \{ \xi _ {i} \} _ {1} ^ {n} $,
$ \xi _ {i} \in [x _ {i-1 } , x _ {i} ] $,
and an arbitrary $ t $,
the following sum is constructed:
$$ I(t) = \sum _ { i=1 } ^ { n } f( \xi _ {i} +t) [x _ {i} -x _ {i-1} ]. $$
If, for $ \rho = \max _ {i} (x _ {i} - x _ {i-1 } ) \rightarrow 0 $, $ I(t) $ converges in measure to a definite limit $ I $, the number $ I $ is said to be the Boks integral ( $ B $- integral) of $ f $ over $ [a, b] $. Thus, the Boks integral is an integral of Riemann type and is a generalization of the Riemann integral.
The Boks integral represents a considerable extension of the Lebesgue integral: Any summable function is $ B $- integrable and these integrals coincide, but there exist non-summable $ B $- integrable functions; in particular, if $ g $ is the function conjugate with a summable function $ f $, then it is $ B $- integrable and the coefficients of the series conjugate with the Fourier series of $ f $ are the coefficients of the respective Fourier series (in the sense of $ B $- integration) of $ g $( A.N. Kolmogorov). The theory of the Boks integral was not further developed, since the $ A $- integral proved to be more convenient for the integration of functions conjugate with summable functions.
References
[1] | T.J. Boks, "Sur les rapports entre les méthodes de l'intégration de Riemann et de Lebesque" Rend. Circ. Mat. Palermo (2) , 45 (1921) pp. 211–264 |
[2] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
Boks integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boks_integral&oldid=19058