|
|
Line 1: |
Line 1: |
− | An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848101.png" />-dimensional [[Differential form|differential form]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848102.png" /> on an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848103.png" /> such that the co-mass (cf. [[Mass and co-mass|Mass and co-mass]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848104.png" /> and the co-mass Lipschitz constant
| + | <!-- |
| + | s0848101.png |
| + | $#A+1 = 61 n = 0 |
| + | $#C+1 = 61 : ~/encyclopedia/old_files/data/S084/S.0804810 Sharp form |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848105.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848107.png" /> is the length of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848108.png" />, are finite. The number
| + | An $ r $- |
| + | dimensional [[Differential form|differential form]] $ \omega $ |
| + | on an open subset $ R \subset E ^ {n} $ |
| + | such that the co-mass (cf. [[Mass and co-mass|Mass and co-mass]]) $ | \omega | _ {0} $ |
| + | and the co-mass Lipschitz constant |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s0848109.png" /></td> </tr></table>
| + | $$ |
| + | {\mathcal L} _ {0} ( \omega ) = \sup |
| + | \frac{| \omega ( p) - \omega |
| + | ( q) | }{| p - q | } |
| + | , |
| + | $$ |
| | | |
− | is known as the sharp norm of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481010.png" />. | + | where $ p , q \in R $ |
| + | and $ | p - q | $ |
| + | is the length of the vector $ p - q $, |
| + | are finite. The number |
| | | |
− | Whitney's theorem. To each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481011.png" />-dimensional sharp cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481013.png" /> corresponds a unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481014.png" />-dimensional sharp form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481015.png" /> for which
| + | $$ |
| + | | \omega | ^ \srp = \sup \{ | \omega | _ {0} ,\ |
| + | ( r + 1 ) {\mathcal L} _ {0} ( \omega ) \} |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481016.png" /></td> </tr></table>
| + | is known as the sharp norm of the form $ \omega $. |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481017.png" />-dimensional oriented simplices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481018.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481019.png" /> is defined by the formula
| + | Whitney's theorem. To each $ r $- |
| + | dimensional sharp cochain $ X $ |
| + | in $ R $ |
| + | corresponds a unique $ r $- |
| + | dimensional sharp form $ \omega _ {X} $ |
| + | for which |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481020.png" /></td> </tr></table>
| + | $$ |
| + | X \sigma ^ {r} = \int\limits _ {\sigma ^ {r} } \omega _ {X} $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481021.png" /> is a sequence of simplices containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481022.png" />, with diameters tending to zero, and lying in the same plane. This correspondence is a one-to-one mapping of the space of cochains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481023.png" /> into the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481024.png" /> of sharp forms; moreover:
| + | for all $ r $- |
| + | dimensional oriented simplices $ \sigma ^ {r} $; |
| + | $ \omega _ {X} ( p) $ |
| + | is defined by the formula |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481025.png" />, i.e. the co-mass of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481026.png" />;
| + | $$ |
| + | \omega _ {X} ( p) = \lim\limits |
| + | \frac{X \sigma _ {i} }{| \sigma _ {i} | } |
| + | , |
| + | $$ |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481027.png" />, i.e. the Lipschitz constant of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481028.png" />;
| + | where $ \sigma _ {1} , \sigma _ {2} \dots $ |
| + | is a sequence of simplices containing the point $ p $, |
| + | with diameters tending to zero, and lying in the same plane. This correspondence is a one-to-one mapping of the space of cochains $ C ^ {\srp r } ( R) $ |
| + | into the space $ \Omega ^ {\srp r } $ |
| + | of sharp forms; moreover: |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481029.png" />, i.e. the [[Sharp norm|sharp norm]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481030.png" />;
| + | $ | \omega _ {X} | _ {0} = | X | $, |
| + | i.e. the co-mass of $ X $; |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481031.png" /> is a Banach space.
| + | $ {\mathcal L} ( \omega _ {X} ) = {\mathcal L} ( X) $, |
| + | i.e. the Lipschitz constant of $ X $; |
| + | |
| + | $ | \omega _ {X} | ^ \srp = | X | ^ \srp $, |
| + | i.e. the [[Sharp norm|sharp norm]] of $ X $; |
| + | |
| + | $ \Omega ^ {\srp r } $ |
| + | is a Banach space. |
| | | |
| In particular, there is a correspondence between zero-dimensional sharp cochains and sharp functions (bounded functions which satisfy a Lipschitz condition). | | In particular, there is a correspondence between zero-dimensional sharp cochains and sharp functions (bounded functions which satisfy a Lipschitz condition). |
| | | |
− | The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481033.png" />-dimensional sharp chains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481034.png" /> of finite [[Mass|mass]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481035.png" /> with the sharp norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481036.png" /> is isomorphic to the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481037.png" /> of additive set functions whose values are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481039.png" />-vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481040.png" />, provided with the sharp norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481041.png" />; this correspondence is defined by the formula: | + | The space $ C _ {r} ^ \srp ( R) $ |
| + | of $ r $- |
| + | dimensional sharp chains $ A $ |
| + | of finite [[Mass|mass]] $ | A | $ |
| + | with the sharp norm $ | A | ^ \srp $ |
| + | is isomorphic to the space $ \Gamma _ {r} ^ \srp ( E ^ {n} ) $ |
| + | of additive set functions whose values are $ r $- |
| + | vectors $ \gamma $, |
| + | provided with the sharp norm $ | \gamma | ^ \srp $; |
| + | this correspondence is defined by the formula: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$ \tag{* } |
| + | X A = \int\limits _ {E ^ {n} } \omega _ {X} d {\gamma _ {A} } |
| + | = [ \omega \cdot \gamma ] ( E ^ {n} ) |
| + | $$ |
| | | |
− | for any cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481043.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481044.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481045.png" />-dimensional sharp form corresponding to the cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481046.png" />, and | + | for any cochain $ X $, |
| + | where $ \omega _ {X} $ |
| + | is the $ r $- |
| + | dimensional sharp form corresponding to the cochain $ X $, |
| + | and |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481047.png" />, i.e. the covector of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481048.png" />;
| + | $ \gamma _ {A} ( E ^ {n} ) = \{ A \} $, |
| + | i.e. the covector of the chain $ A $; |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481049.png" />, i.e. the complete variation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481050.png" />;
| + | $ | A | = | \gamma _ {A} | $, |
| + | i.e. the complete variation of $ \gamma _ {A} $; |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481051.png" />, i.e. the sharp norm of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481052.png" />.
| + | $ | \gamma _ {A} | ^ \srp = | A | ^ \srp $, |
| + | i.e. the sharp norm of the chain $ A $. |
| | | |
− | Thus, (*) is a generalization of the ordinary Lebesgue–Stieltjes integral. In particular, the Lebesgue-measurable summable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481053.png" /> associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481054.png" /> (cf. [[Flat form|Flat form]]), i.e. | + | Thus, (*) is a generalization of the ordinary Lebesgue–Stieltjes integral. In particular, the Lebesgue-measurable summable function $ \alpha ( p) $ |
| + | associated with $ A $( |
| + | cf. [[Flat form|Flat form]]), i.e. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481055.png" /></td> </tr></table>
| + | $$ |
| + | X \cdot A = \int\limits _ {E ^ {n} } \omega _ {X} \cdot \alpha ( p) dp |
| + | $$ |
| | | |
− | for any cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481056.png" />, exists for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481057.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481058.png" /> is absolutely continuous. | + | for any cochain $ X $, |
| + | exists for $ A $ |
| + | if and only if $ \gamma _ {A} $ |
| + | is absolutely continuous. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481059.png" /> is a regular form and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481060.png" /> is a sharp cochain, then there exists a form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481061.png" />, and Stokes' formula | + | If $ \omega _ {A} $ |
| + | is a regular form and $ X $ |
| + | is a sharp cochain, then there exists a form $ \omega _ {dX } = d \omega _ {X} $, |
| + | and Stokes' formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084810/s08481062.png" /></td> </tr></table>
| + | $$ |
| + | \int\limits _ {\partial \sigma } \omega _ {X} = \int\limits _ \sigma d \omega |
| + | $$ |
| | | |
| applies. Other results established for regular forms can be generalized in an analogous manner. | | applies. Other results established for regular forms can be generalized in an analogous manner. |
| | | |
| For references see [[Sharp norm|Sharp norm]]. | | For references see [[Sharp norm|Sharp norm]]. |
An $ r $-
dimensional differential form $ \omega $
on an open subset $ R \subset E ^ {n} $
such that the co-mass (cf. Mass and co-mass) $ | \omega | _ {0} $
and the co-mass Lipschitz constant
$$
{\mathcal L} _ {0} ( \omega ) = \sup
\frac{| \omega ( p) - \omega
( q) | }{| p - q | }
,
$$
where $ p , q \in R $
and $ | p - q | $
is the length of the vector $ p - q $,
are finite. The number
$$
| \omega | ^ \srp = \sup \{ | \omega | _ {0} ,\
( r + 1 ) {\mathcal L} _ {0} ( \omega ) \}
$$
is known as the sharp norm of the form $ \omega $.
Whitney's theorem. To each $ r $-
dimensional sharp cochain $ X $
in $ R $
corresponds a unique $ r $-
dimensional sharp form $ \omega _ {X} $
for which
$$
X \sigma ^ {r} = \int\limits _ {\sigma ^ {r} } \omega _ {X} $$
for all $ r $-
dimensional oriented simplices $ \sigma ^ {r} $;
$ \omega _ {X} ( p) $
is defined by the formula
$$
\omega _ {X} ( p) = \lim\limits
\frac{X \sigma _ {i} }{| \sigma _ {i} | }
,
$$
where $ \sigma _ {1} , \sigma _ {2} \dots $
is a sequence of simplices containing the point $ p $,
with diameters tending to zero, and lying in the same plane. This correspondence is a one-to-one mapping of the space of cochains $ C ^ {\srp r } ( R) $
into the space $ \Omega ^ {\srp r } $
of sharp forms; moreover:
$ | \omega _ {X} | _ {0} = | X | $,
i.e. the co-mass of $ X $;
$ {\mathcal L} ( \omega _ {X} ) = {\mathcal L} ( X) $,
i.e. the Lipschitz constant of $ X $;
$ | \omega _ {X} | ^ \srp = | X | ^ \srp $,
i.e. the sharp norm of $ X $;
$ \Omega ^ {\srp r } $
is a Banach space.
In particular, there is a correspondence between zero-dimensional sharp cochains and sharp functions (bounded functions which satisfy a Lipschitz condition).
The space $ C _ {r} ^ \srp ( R) $
of $ r $-
dimensional sharp chains $ A $
of finite mass $ | A | $
with the sharp norm $ | A | ^ \srp $
is isomorphic to the space $ \Gamma _ {r} ^ \srp ( E ^ {n} ) $
of additive set functions whose values are $ r $-
vectors $ \gamma $,
provided with the sharp norm $ | \gamma | ^ \srp $;
this correspondence is defined by the formula:
$$ \tag{* }
X A = \int\limits _ {E ^ {n} } \omega _ {X} d {\gamma _ {A} }
= [ \omega \cdot \gamma ] ( E ^ {n} )
$$
for any cochain $ X $,
where $ \omega _ {X} $
is the $ r $-
dimensional sharp form corresponding to the cochain $ X $,
and
$ \gamma _ {A} ( E ^ {n} ) = \{ A \} $,
i.e. the covector of the chain $ A $;
$ | A | = | \gamma _ {A} | $,
i.e. the complete variation of $ \gamma _ {A} $;
$ | \gamma _ {A} | ^ \srp = | A | ^ \srp $,
i.e. the sharp norm of the chain $ A $.
Thus, (*) is a generalization of the ordinary Lebesgue–Stieltjes integral. In particular, the Lebesgue-measurable summable function $ \alpha ( p) $
associated with $ A $(
cf. Flat form), i.e.
$$
X \cdot A = \int\limits _ {E ^ {n} } \omega _ {X} \cdot \alpha ( p) dp
$$
for any cochain $ X $,
exists for $ A $
if and only if $ \gamma _ {A} $
is absolutely continuous.
If $ \omega _ {A} $
is a regular form and $ X $
is a sharp cochain, then there exists a form $ \omega _ {dX } = d \omega _ {X} $,
and Stokes' formula
$$
\int\limits _ {\partial \sigma } \omega _ {X} = \int\limits _ \sigma d \omega
$$
applies. Other results established for regular forms can be generalized in an analogous manner.
For references see Sharp norm.