Namespaces
Variants
Actions

Difference between revisions of "Formal power series"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX partially done)
Line 1: Line 1:
''over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408701.png" /> in commuting variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408702.png" />''
+
''over a ring $A$ in commuting variables $T_1,\ldots,T_N$''
  
 
An algebraic expression of the form
 
An algebraic expression of the form
 +
$$
 +
F = \sum_{k=0}^\infty F_k
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408703.png" /></td> </tr></table>
+
where $F_k$ is a form of degree $k$ in $T_1,\ldots,T_N$ with coefficients in $A$. The minimal value of $k$ for which $F_k \ne 0$ is called the order of the series $F$, and the form $F_k$ is called the initial form of the series.
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408704.png" /> is a form of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408705.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408706.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408707.png" />. The minimal value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408708.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f0408709.png" /> is called the order of the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087010.png" />, and the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087011.png" /> is called the initial form of the series.
 
  
 
If
 
If
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087012.png" /></td> </tr></table>
+
F = \sum_{k=0}^\infty F_k \ \ \text{and}\ \ G = \sum_{k=0}^\infty G_k
 
+
$$
 
are two formal power series, then, by definition,
 
are two formal power series, then, by definition,
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087013.png" /></td> </tr></table>
+
F + G = \sum_{k=0}^\infty F_k + G_k
 
+
$$
 
and
 
and
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087014.png" /></td> </tr></table>
+
F \cdot G = \sum_{k=0}^\infty H_k
 
+
$$
 
where
 
where
 +
$$
 +
H_k = \sum_{j=0}^k F_j G_{k-j} \ .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087015.png" /></td> </tr></table>
+
The set $A[[T_1,\ldots,T_N]]$ of all formal power series forms a ring under these operations.
  
The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087016.png" /> of all formal power series forms a ring under these operations.
+
A polynomial $F = \sum_{k=0}^n F_k$, where $F_k$ is a form of degree $k$, is identified with the formal power series $C = \sum_{k=0}^\infty C_k$ , where $C_k = F_k$ for $k \le n$ and $C_k = 0$ for $k > n$. This defines an imbedding $i$ of the polynomial ring $A[T_1,\ldots,T_N]$ into $A[[T_1,\ldots,T_N]]$. There is a topology defined on $A[[T_1,\ldots,T_N]]$ for which the ideals
 +
$$
 +
I_n = \{ F = \sum_{k=0}^\infty F_k \ :\ F_k = 0 \ \text{for}\ k \le n \}
 +
$$
 +
form a fundamental system of neighbourhoods of zero. This topology is separable, the ring $A[[T_1,\ldots,T_N]]$ is complete relative to it, and the image of $A[T_1,\ldots,T_N]$ under the imbedding $i$ is everywhere dense in $A[[T_1,\ldots,T_N]]$. Relative to this topology, a power series $F = \sum_{k=0}^\infty F_k$ is the limit of its partial sums $F = \sum_{k=0}^n F_k$.
  
A polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087018.png" /> is a form of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087019.png" />, is identified with the formal power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087021.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087023.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087024.png" />. This defines an imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087025.png" /> of the polynomial ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087026.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087027.png" />. There is a topology defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087028.png" /> for which the ideals
+
Suppose that $A$ is a commutative ring with an identity. Then so is $A[[T_1,\ldots,T_N]]$. If $A$ is an integral domain, then so is $A[[T_1,\ldots,T_N]]$. A formal power series $F = \sum_{k=0}^\infty F_k$ is invertible in $A[[T_1,\ldots,T_N]]$ if and only if $F_0$ is invertible in $A$. If $A$ is Noetherian, then so is $A[[T_1,\ldots,T_N]]$. If $A$ is a local ring with maximal ideal $\mathfrak{m}$, then $A[[T_1,\ldots,T_N]]$ is a local ring with maximal ideal $\left\langle \mathfrak{m}, T_1,\ldots,T_N \right\rangle$ .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087029.png" /></td> </tr></table>
+
If a local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087050.png" /> is separable and complete in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087051.png" />-adic topology, then the [[Weierstrass preparation theorem]] is true in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087052.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087053.png" /> be a formal power series such that for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087054.png" /> the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087055.png" /> contains a term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087056.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087057.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087058.png" /> be the minimal index with this property. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087059.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087060.png" /> is an invertible formal power series and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087061.png" /> is a polynomial of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087062.png" />, where the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087063.png" /> belong to the maximal ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087064.png" />. The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087066.png" /> are uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087067.png" />.
 
 
form a fundamental system of neighbourhoods of zero. This topology is separable, the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087030.png" /> is complete relative to it, and the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087031.png" /> under the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087032.png" /> is everywhere dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087033.png" />. Relative to this topology, a power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087034.png" /> is the limit of its partial sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087035.png" />.
 
 
 
Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087036.png" /> is a commutative ring with an identity. Then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087037.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087038.png" /> is an integral domain, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087039.png" />. A formal power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087040.png" /> is invertible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087041.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087042.png" /> is invertible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087043.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087044.png" /> is Noetherian, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087045.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087046.png" /> is a local ring with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087047.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087048.png" /> is a local ring with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087049.png" />.
 
 
 
If a local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087050.png" /> is separable and complete in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087051.png" />-adic topology, then the Weierstrass preparation theorem is true in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087052.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087053.png" /> be a formal power series such that for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087054.png" /> the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087055.png" /> contains a term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087056.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087057.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087058.png" /> be the minimal index with this property. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087059.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087060.png" /> is an invertible formal power series and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087061.png" /> is a polynomial of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087062.png" />, where the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087063.png" /> belong to the maximal ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087064.png" />. The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087066.png" /> are uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087067.png" />.
 
  
 
The ring of formal power series over a field or a discretely-normed ring is factorial.
 
The ring of formal power series over a field or a discretely-normed ring is factorial.
Line 40: Line 42:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  O. Zariski,  P. Samuel,  "Commutative algebra" , '''2''' , v. Nostrand  (1960)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  O. Zariski,  P. Samuel,  "Commutative algebra" , '''2''' , v. Nostrand  (1960)</TD></TR>
 +
</table>
  
  
Line 60: Line 65:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Berstel (ed.) , ''Series formelles en variables noncommutatives et aplications'' , Lab. Inform. Théor. Programmation  (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Nagata,  "Local rings" , Interscience  (1960)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Berstel (ed.) , ''Series formelles en variables noncommutatives et aplications'' , Lab. Inform. Théor. Programmation  (1978)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Nagata,  "Local rings" , Interscience  (1960)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|part}}

Revision as of 20:04, 6 December 2015

over a ring $A$ in commuting variables $T_1,\ldots,T_N$

An algebraic expression of the form $$ F = \sum_{k=0}^\infty F_k $$

where $F_k$ is a form of degree $k$ in $T_1,\ldots,T_N$ with coefficients in $A$. The minimal value of $k$ for which $F_k \ne 0$ is called the order of the series $F$, and the form $F_k$ is called the initial form of the series.

If $$ F = \sum_{k=0}^\infty F_k \ \ \text{and}\ \ G = \sum_{k=0}^\infty G_k $$ are two formal power series, then, by definition, $$ F + G = \sum_{k=0}^\infty F_k + G_k $$ and $$ F \cdot G = \sum_{k=0}^\infty H_k $$ where $$ H_k = \sum_{j=0}^k F_j G_{k-j} \ . $$

The set $A[[T_1,\ldots,T_N]]$ of all formal power series forms a ring under these operations.

A polynomial $F = \sum_{k=0}^n F_k$, where $F_k$ is a form of degree $k$, is identified with the formal power series $C = \sum_{k=0}^\infty C_k$ , where $C_k = F_k$ for $k \le n$ and $C_k = 0$ for $k > n$. This defines an imbedding $i$ of the polynomial ring $A[T_1,\ldots,T_N]$ into $A[[T_1,\ldots,T_N]]$. There is a topology defined on $A[[T_1,\ldots,T_N]]$ for which the ideals $$ I_n = \{ F = \sum_{k=0}^\infty F_k \ :\ F_k = 0 \ \text{for}\ k \le n \} $$ form a fundamental system of neighbourhoods of zero. This topology is separable, the ring $A[[T_1,\ldots,T_N]]$ is complete relative to it, and the image of $A[T_1,\ldots,T_N]$ under the imbedding $i$ is everywhere dense in $A[[T_1,\ldots,T_N]]$. Relative to this topology, a power series $F = \sum_{k=0}^\infty F_k$ is the limit of its partial sums $F = \sum_{k=0}^n F_k$.

Suppose that $A$ is a commutative ring with an identity. Then so is $A[[T_1,\ldots,T_N]]$. If $A$ is an integral domain, then so is $A[[T_1,\ldots,T_N]]$. A formal power series $F = \sum_{k=0}^\infty F_k$ is invertible in $A[[T_1,\ldots,T_N]]$ if and only if $F_0$ is invertible in $A$. If $A$ is Noetherian, then so is $A[[T_1,\ldots,T_N]]$. If $A$ is a local ring with maximal ideal $\mathfrak{m}$, then $A[[T_1,\ldots,T_N]]$ is a local ring with maximal ideal $\left\langle \mathfrak{m}, T_1,\ldots,T_N \right\rangle$ .

If a local ring is separable and complete in the -adic topology, then the Weierstrass preparation theorem is true in . Let be a formal power series such that for some the form contains a term , where , and let be the minimal index with this property. Then , where is an invertible formal power series and is a polynomial of the form , where the coefficients belong to the maximal ideal of . The elements and are uniquely determined by .

The ring of formal power series over a field or a discretely-normed ring is factorial.

Rings of formal power series in non-commuting variables have also been studied.

References

[1] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[2] O. Zariski, P. Samuel, "Commutative algebra" , 2 , v. Nostrand (1960)


Comments

Power series in non-commuting variables are becoming rapidly more important and find applications in combinatorics (enumerative graph theory), computer science (automata) and system and control theory (representation of the input-output behaviour of non-linear systems, especially bilinear systems); cf. the collection [a1] for a first idea.

Let be a ring containing (or provided with a ring homomorphism ), let be an ideal in and suppose that is complete in the -adic topology on . Let be elements of . Then an expression

where the range over , , has a well-defined meaning in (as the unique limit of the finite sums

as ). Such an expression is also called a formal power series over . Mapping to , , defines a (continuous) homomorphism . If this homomorphism is injective, the are said to be analytically independent over .

Let now be a field with a multiplicative norm on it (i.e. ), e.g. with the usual norm or , the rational field, with the norm if , where is the -adic valuation on ( for is the exponent of the largest power of the prime number that divides ; ). Now consider all formal power series over such that there exists positive numbers and such that . These form a subring of , called the ring of convergent power series over and denoted by (or , but the latter notation also occurs for the ring of power series in non-commuting variables over ). The Weierstrass preparation theorem also holds in .

References

[a1] J. Berstel (ed.) , Series formelles en variables noncommutatives et aplications , Lab. Inform. Théor. Programmation (1978)
[a2] M. Nagata, "Local rings" , Interscience (1960)
How to Cite This Entry:
Formal power series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Formal_power_series&oldid=18797
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article