Namespaces
Variants
Actions

Difference between revisions of "Semi-martingale"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Stochastic process|stochastic process]] that can be represented as the sum of a local [[Martingale|martingale]] and a process of locally bounded variation. For the formal definition of a semi-martingale one starts from a stochastic basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842301.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842302.png" /> (cf. [[Stochastic processes, filtering of|Stochastic processes, filtering of]]). A stochastic process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842303.png" /> is called a semi-martingale if its trajectories are right-continuous and have left limits, and if it can be represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842304.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842305.png" /> is a local martingale and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842306.png" /> is a process of locally bounded variation, that is,
+
<!--
 +
s0842301.png
 +
$#A+1 = 48 n = 0
 +
$#C+1 = 48 : ~/encyclopedia/old_files/data/S084/S.0804230 Semi\AAhmartingale
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842307.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
In general this representation is non-unique. But in the class of representations with predictable processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842308.png" />, the representation is unique (up to stochastic equivalence). The following belong to the class of semi-martingales (apart from local martingales and processes of locally bounded variation): local super-martingales and submartingales, processes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s0842309.png" /> with independent increments for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423010.png" /> is a function of locally bounded variation for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423011.png" /> (and so all processes with stationary independent increments), Itô processes, diffusion-type processes, and others. The class of semi-martingales is invariant under an equivalent change of measure. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423012.png" /> is a semi-martingale and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423013.png" /> is twice continuously differentiable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423014.png" /> is also a semi-martingale. Here (Itô's formula)
+
A [[Stochastic process|stochastic process]] that can be represented as the sum of a local [[Martingale|martingale]] and a process of locally bounded variation. For the formal definition of a semi-martingale one starts from a stochastic basis  $  ( \Omega , {\mathcal F} , \mathbf F , {\mathsf P} ) $,  
 +
where  $  \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq  0 }  $(
 +
cf. [[Stochastic processes, filtering of|Stochastic processes, filtering of]]). A stochastic process  $  X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t \geq  0 }  $
 +
is called a semi-martingale if its trajectories are right-continuous and have left limits, and if it can be represented in the form  $  X _ {t} = M _ {t} + V _ {t} $,
 +
where  $  M = ( M _ {t} , {\mathcal F} _ {t} ) $
 +
is a local martingale and  $  V = ( V _ {t} , {\mathcal F} _ {t} ) $
 +
is a process of locally bounded variation, that is,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423015.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { 0 } ^ { t }
 +
| dV _ {s} ( \omega ) |  < \infty ,\ \
 +
t > 0,\ \
 +
\omega \in \Omega .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423016.png" /></td> </tr></table>
+
In general this representation is non-unique. But in the class of representations with predictable processes  $  V $,
 +
the representation is unique (up to stochastic equivalence). The following belong to the class of semi-martingales (apart from local martingales and processes of locally bounded variation): local super-martingales and submartingales, processes  $  X $
 +
with independent increments for which  $  f ( t) = {\mathsf E} e ^ {i \lambda X _ {t} } $
 +
is a function of locally bounded variation for any  $  \lambda \in \mathbf R $(
 +
and so all processes with stationary independent increments), Itô processes, diffusion-type processes, and others. The class of semi-martingales is invariant under an equivalent change of measure. If  $  X $
 +
is a semi-martingale and  $  f $
 +
is twice continuously differentiable, then  $  f ( X) = ( f ( X _ {t} ), {\mathcal F} _ {t} ) $
 +
is also a semi-martingale. Here (Itô's formula)
 +
 
 +
$$
 +
f ( X _ {t} )  = \
 +
f ( X _ {0} ) +
 +
\int\limits _ { 0 } ^ { t }
 +
f ^ { \prime } ( X _ {s _ {-}  } )  dX _ {s} + {
 +
\frac{1}{2}
 +
}
 +
\int\limits _ { 0 } ^ { t }
 +
f ^ { \prime\prime } ( X _ {s _ {-}  } )  d [ X, X] _ {s}  ^ {c} +
 +
$$
 +
 
 +
$$
 +
+
 +
\sum _ {0 < s \leq  t } [ f ( X _ {s} ) - f ( X _ {s
 +
^ {-}  } ) - f ^ { \prime } ( X _ {s  ^ {-}  } ) \Delta X _ {s} ]
 +
$$
  
 
or, equivalently,
 
or, equivalently,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423017.png" /></td> </tr></table>
+
$$
 +
f ( X _ {t} )  = \
 +
f ( X _ {0} ) +
 +
\int\limits _ { 0 } ^ { t }
 +
f ^ { \prime } ( X _ {s  ^ {-}  } )  dX _ {s} + {
 +
\frac{1}{2}
 +
}
 +
\int\limits _ { 0 } ^ { t }
 +
f ^ { \prime\prime } ( X _ {s  ^ {-}  } )  d [ X, X] _ {s} +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423018.png" /></td> </tr></table>
+
$$
 +
+
 +
\sum _ {0 < s \leq  t } \left [ f ( X _ {s} ) - f ( X _ {s  ^ {-}  } ) - f ^ { \prime } ( X _ {s  ^ {-}  } ) \Delta X _ {s
 +
^ {-}  } - {
 +
\frac{1}{2}
 +
} f ^ { \prime\prime } ( X _ {s  ^ {-}  } ) ( \Delta X _ {s} )  ^ {2} \right ] ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423019.png" /> is the quadratic variation of the semi-martingale <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423020.png" />, that is,
+
where $  [ X, X] = ([ X, X] _ {t} , {\mathcal F} _ {t} ) $
 +
is the quadratic variation of the semi-martingale $  X $,  
 +
that is,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423021.png" /></td> </tr></table>
+
$$
 +
[ X, X] _ {t}  = \
 +
X _ {0}  ^ {2} + 2
 +
\int\limits _ { 0 } ^ { t }
 +
X _ {s  ^ {-}  }  dX _ {s} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423022.png" /></td> </tr></table>
+
$$
 +
[ X, X] _ {t}  ^ {c}  = [ X, X] _ {t} - \sum _ {0 < x \leq  t } ( \Delta X _ {s} )  ^ {2}
 +
$$
  
is the continuous part of the quadratic variation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423024.png" />, and the integrals are understood as stochastic integrals with respect to a semi-martingale (cf. [[Stochastic integral|Stochastic integral]]).
+
is the continuous part of the quadratic variation $  [ X, X] $,
 +
$  \Delta X _ {s} = X _ {s} - X _ {s - }  $,  
 +
and the integrals are understood as stochastic integrals with respect to a semi-martingale (cf. [[Stochastic integral|Stochastic integral]]).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423025.png" /> is a semi-martingale, then the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423026.png" /> with
+
If $  X $
 +
is a semi-martingale, then the process $  X ^ {(\leq  1) } = ( X _ {t} ^ {(\leq  1) } , {\mathcal F} _ {t} ) $
 +
with
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423027.png" /></td> </tr></table>
+
$$
 +
X _ {t} ^ {(\leq  1) }  = \
 +
X _ {t} -
 +
\sum _ {0 < s \leq  t }
 +
\Delta X _ {s} I (| \Delta X _ {s} | > 1)
 +
$$
  
has bounded jumps, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423028.png" />, and so can be uniquely represented as
+
has bounded jumps, $  | \Delta X _ {t} ^ {(\leq  1) } | \leq  1 $,  
 +
and so can be uniquely represented as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423029.png" /></td> </tr></table>
+
$$
 +
X _ {t} ^ {(\leq  1) }  = \
 +
X _ {0} + B _ {t} + M _ {t} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423030.png" /> is a [[Predictable random process|predictable random process]] of locally bounded variation and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423031.png" /> is a local martingale. This martingale can be uniquely represented as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423033.png" /> is a continuous local martingale (a continuous martingale forming the semi-martingale <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423034.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423035.png" /> is a purely-discontinuous local martingale that can be written in the form
+
where $  B = ( B _ {t} , {\mathcal F} _ {t} ) $
 +
is a [[Predictable random process|predictable random process]] of locally bounded variation and $  M = ( M _ {t} , {\mathcal F} _ {t} ) $
 +
is a local martingale. This martingale can be uniquely represented as $  M = M  ^ {c} + M  ^ {d} $,  
 +
where $  M  ^ {c} = ( M _ {t}  ^ {c} , {\mathcal F} _ {t} ) $
 +
is a continuous local martingale (a continuous martingale forming the semi-martingale $  X $)  
 +
and $  M  ^ {d} = ( M _ {t}  ^ {d} , {\mathcal F} _ {t} ) $
 +
is a purely-discontinuous local martingale that can be written in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423036.png" /></td> </tr></table>
+
$$
 +
M _ {t}  ^ {d}  = \
 +
\int\limits _ { 0 } ^ { t }
 +
\int\limits _ {| x| \leq  1 }
 +
x  d ( \mu - \nu ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423037.png" /> is the random jump measure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423038.png" />, that is,
+
where $  d \mu = \mu ( \omega , dt, dx) $
 +
is the random jump measure of $  X $,  
 +
that is,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423039.png" /></td> </tr></table>
+
$$
 +
\mu ( \omega , ( 0, t], \Gamma )  = \
 +
\sum _ {0 < s \leq  t }
 +
I ( \Delta X _ {s} \in \Gamma ),\ \
 +
\Gamma \in {\mathcal B}
 +
( \mathbf R \setminus  \{ 0 \} ),
 +
$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423040.png" /> is its compensator. Since
+
and $  d v = \nu ( \omega , dt, dx) $
 +
is its compensator. Since
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423041.png" /></td> </tr></table>
+
$$
 +
\sum _ {0 < s \leq  t }
 +
\Delta X _ {s} I (| \Delta X _ {s} | > 1)  = \
 +
\int\limits _ { 0 } ^ { t }
 +
\int\limits _ {| x | > 1 } x  d \mu ,
 +
$$
  
each semi-martingale <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423042.png" /> admits a representation
+
each semi-martingale $  X $
 +
admits a representation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423043.png" /></td> </tr></table>
+
$$
 +
X _ {t}  = \
 +
X _ {0} + B _ {t} + M _ {t}  ^ {c} +
 +
\int\limits _ { 0 } ^ { t }
 +
\int\limits _ {| x | \leq  1 } x  d ( \mu - \nu ) +
 +
\int\limits _ { 0 } ^ { t }
 +
\int\limits _ {| x | > 1 }
 +
x  d \mu ,
 +
$$
  
 
called the canonical representation (decomposition).
 
called the canonical representation (decomposition).
  
The set of (predictable) characteristics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423044.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423045.png" /> is the quadratic characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423046.png" />, that is, a predictable increasing process such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423047.png" /> is a local martingale, is called a triplet of local (predictable) characteristics of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084230/s08423048.png" />.
+
The set of (predictable) characteristics $  ( B, \langle  M  ^ {c} \rangle , \nu ) $,  
 +
where $  \langle  M  ^ {c} \rangle $
 +
is the quadratic characteristic of $  M  ^ {c} $,  
 +
that is, a predictable increasing process such that $  ( M  ^ {c} )  ^ {2} - \langle  M  ^ {c} \rangle $
 +
is a local martingale, is called a triplet of local (predictable) characteristics of $  X $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J. Jacod,  "Calcul stochastique et problèmes de martingales" , ''Lect. notes in math.'' , '''714''' , Springer  (1979)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.Sh. Liptser,  A.N. [A.N. Shiryaev] Shiryayev,  "Theory of martingales" , Kluwer  (1989)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J. Jacod,  "Calcul stochastique et problèmes de martingales" , ''Lect. notes in math.'' , '''714''' , Springer  (1979)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.Sh. Liptser,  A.N. [A.N. Shiryaev] Shiryayev,  "Theory of martingales" , Kluwer  (1989)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:13, 6 June 2020


A stochastic process that can be represented as the sum of a local martingale and a process of locally bounded variation. For the formal definition of a semi-martingale one starts from a stochastic basis $ ( \Omega , {\mathcal F} , \mathbf F , {\mathsf P} ) $, where $ \mathbf F = ( {\mathcal F} _ {t} ) _ {t \geq 0 } $( cf. Stochastic processes, filtering of). A stochastic process $ X = ( X _ {t} , {\mathcal F} _ {t} ) _ {t \geq 0 } $ is called a semi-martingale if its trajectories are right-continuous and have left limits, and if it can be represented in the form $ X _ {t} = M _ {t} + V _ {t} $, where $ M = ( M _ {t} , {\mathcal F} _ {t} ) $ is a local martingale and $ V = ( V _ {t} , {\mathcal F} _ {t} ) $ is a process of locally bounded variation, that is,

$$ \int\limits _ { 0 } ^ { t } | dV _ {s} ( \omega ) | < \infty ,\ \ t > 0,\ \ \omega \in \Omega . $$

In general this representation is non-unique. But in the class of representations with predictable processes $ V $, the representation is unique (up to stochastic equivalence). The following belong to the class of semi-martingales (apart from local martingales and processes of locally bounded variation): local super-martingales and submartingales, processes $ X $ with independent increments for which $ f ( t) = {\mathsf E} e ^ {i \lambda X _ {t} } $ is a function of locally bounded variation for any $ \lambda \in \mathbf R $( and so all processes with stationary independent increments), Itô processes, diffusion-type processes, and others. The class of semi-martingales is invariant under an equivalent change of measure. If $ X $ is a semi-martingale and $ f $ is twice continuously differentiable, then $ f ( X) = ( f ( X _ {t} ), {\mathcal F} _ {t} ) $ is also a semi-martingale. Here (Itô's formula)

$$ f ( X _ {t} ) = \ f ( X _ {0} ) + \int\limits _ { 0 } ^ { t } f ^ { \prime } ( X _ {s _ {-} } ) dX _ {s} + { \frac{1}{2} } \int\limits _ { 0 } ^ { t } f ^ { \prime\prime } ( X _ {s _ {-} } ) d [ X, X] _ {s} ^ {c} + $$

$$ + \sum _ {0 < s \leq t } [ f ( X _ {s} ) - f ( X _ {s ^ {-} } ) - f ^ { \prime } ( X _ {s ^ {-} } ) \Delta X _ {s} ] $$

or, equivalently,

$$ f ( X _ {t} ) = \ f ( X _ {0} ) + \int\limits _ { 0 } ^ { t } f ^ { \prime } ( X _ {s ^ {-} } ) dX _ {s} + { \frac{1}{2} } \int\limits _ { 0 } ^ { t } f ^ { \prime\prime } ( X _ {s ^ {-} } ) d [ X, X] _ {s} + $$

$$ + \sum _ {0 < s \leq t } \left [ f ( X _ {s} ) - f ( X _ {s ^ {-} } ) - f ^ { \prime } ( X _ {s ^ {-} } ) \Delta X _ {s ^ {-} } - { \frac{1}{2} } f ^ { \prime\prime } ( X _ {s ^ {-} } ) ( \Delta X _ {s} ) ^ {2} \right ] , $$

where $ [ X, X] = ([ X, X] _ {t} , {\mathcal F} _ {t} ) $ is the quadratic variation of the semi-martingale $ X $, that is,

$$ [ X, X] _ {t} = \ X _ {0} ^ {2} + 2 \int\limits _ { 0 } ^ { t } X _ {s ^ {-} } dX _ {s} , $$

$$ [ X, X] _ {t} ^ {c} = [ X, X] _ {t} - \sum _ {0 < x \leq t } ( \Delta X _ {s} ) ^ {2} $$

is the continuous part of the quadratic variation $ [ X, X] $, $ \Delta X _ {s} = X _ {s} - X _ {s - } $, and the integrals are understood as stochastic integrals with respect to a semi-martingale (cf. Stochastic integral).

If $ X $ is a semi-martingale, then the process $ X ^ {(\leq 1) } = ( X _ {t} ^ {(\leq 1) } , {\mathcal F} _ {t} ) $ with

$$ X _ {t} ^ {(\leq 1) } = \ X _ {t} - \sum _ {0 < s \leq t } \Delta X _ {s} I (| \Delta X _ {s} | > 1) $$

has bounded jumps, $ | \Delta X _ {t} ^ {(\leq 1) } | \leq 1 $, and so can be uniquely represented as

$$ X _ {t} ^ {(\leq 1) } = \ X _ {0} + B _ {t} + M _ {t} , $$

where $ B = ( B _ {t} , {\mathcal F} _ {t} ) $ is a predictable random process of locally bounded variation and $ M = ( M _ {t} , {\mathcal F} _ {t} ) $ is a local martingale. This martingale can be uniquely represented as $ M = M ^ {c} + M ^ {d} $, where $ M ^ {c} = ( M _ {t} ^ {c} , {\mathcal F} _ {t} ) $ is a continuous local martingale (a continuous martingale forming the semi-martingale $ X $) and $ M ^ {d} = ( M _ {t} ^ {d} , {\mathcal F} _ {t} ) $ is a purely-discontinuous local martingale that can be written in the form

$$ M _ {t} ^ {d} = \ \int\limits _ { 0 } ^ { t } \int\limits _ {| x| \leq 1 } x d ( \mu - \nu ), $$

where $ d \mu = \mu ( \omega , dt, dx) $ is the random jump measure of $ X $, that is,

$$ \mu ( \omega , ( 0, t], \Gamma ) = \ \sum _ {0 < s \leq t } I ( \Delta X _ {s} \in \Gamma ),\ \ \Gamma \in {\mathcal B} ( \mathbf R \setminus \{ 0 \} ), $$

and $ d v = \nu ( \omega , dt, dx) $ is its compensator. Since

$$ \sum _ {0 < s \leq t } \Delta X _ {s} I (| \Delta X _ {s} | > 1) = \ \int\limits _ { 0 } ^ { t } \int\limits _ {| x | > 1 } x d \mu , $$

each semi-martingale $ X $ admits a representation

$$ X _ {t} = \ X _ {0} + B _ {t} + M _ {t} ^ {c} + \int\limits _ { 0 } ^ { t } \int\limits _ {| x | \leq 1 } x d ( \mu - \nu ) + \int\limits _ { 0 } ^ { t } \int\limits _ {| x | > 1 } x d \mu , $$

called the canonical representation (decomposition).

The set of (predictable) characteristics $ ( B, \langle M ^ {c} \rangle , \nu ) $, where $ \langle M ^ {c} \rangle $ is the quadratic characteristic of $ M ^ {c} $, that is, a predictable increasing process such that $ ( M ^ {c} ) ^ {2} - \langle M ^ {c} \rangle $ is a local martingale, is called a triplet of local (predictable) characteristics of $ X $.

References

[1] J. Jacod, "Calcul stochastique et problèmes de martingales" , Lect. notes in math. , 714 , Springer (1979)
[2] R.Sh. Liptser, A.N. [A.N. Shiryaev] Shiryayev, "Theory of martingales" , Kluwer (1989) (Translated from Russian)

Comments

See also Itô formula and Stochastic integral. Semi-martingales are the most general stochastic processes with respect to which it is possible to integrate predictable processes in a reasonable way.

References

[a1] K. Bichteler, "The stochastic integral as a vector measure" , Measure Theory (Oberwolfach, 1979) , Lect. notes in math. , 794 , Springer (1980) pp. 348–360
[a2] C. Dellacherie, "Un survol de la théorie de l'intégrale stochastique" , Measure Theory (Oberwolfach, 1979) , Lect. notes in math. , 794 , Springer (1980) pp. 365–395
[a3] C. Dellacherie, P.A. Meyer, "Probabilités et potentiels" , 2 , Hermann (1980) pp. Chapts. V-VIII: Théorie des martingales
[a4] M. Metivier, "Semimartingales" , de Gruyter (1982)
[a5] L. Schwartz, "Les semi-martingales formelles" , Sem. Probab. XV , Lect. notes in math. , 850 , Springer (1981) pp. 413–489
[a6] J. Jacod, A.N. Shiryaev, "Limit theorems for stochastic processes" , Springer (1987) (Translated from Russian)
How to Cite This Entry:
Semi-martingale. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-martingale&oldid=18714
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article