Difference between revisions of "Poisson brackets"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | p0732701.png | ||
| + | $#A+1 = 41 n = 0 | ||
| + | $#C+1 = 41 : ~/encyclopedia/old_files/data/P073/P.0703270 Poisson brackets | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
The differential expression | The differential expression | ||
| − | + | $$ \tag{1 } | |
| + | ( u , v ) = \ | ||
| + | \sum _ { i= } 1 ^ { n } | ||
| + | \left ( | ||
| + | |||
| + | \frac{\partial u }{\partial q _ {i} } | ||
| + | |||
| + | \frac{\partial v }{\partial p _ {i} } | ||
| + | - | ||
| + | |||
| + | \frac{\partial u }{\partial p _ {i} } | ||
| + | |||
| + | \frac{\partial v }{\partial q _ {i} } | ||
| + | |||
| + | \right ) , | ||
| + | $$ | ||
| − | depending on two functions | + | depending on two functions $ u ( q , p ) $ |
| + | and $ v ( q , p ) $ | ||
| + | of $ 2n $ | ||
| + | variables $ q = ( q _ {1} \dots q _ {n} ) $, | ||
| + | $ p = ( p _ {1} \dots p _ {n} ) $. | ||
| + | The Poisson brackets, introduced by S. Poisson [[#References|[1]]], are a particular case of the [[Jacobi brackets|Jacobi brackets]]. The Poisson brackets are a bilinear form in the functions $ u $ | ||
| + | and $ v $, | ||
| + | such that | ||
| − | + | $$ | |
| + | ( u , v ) = - ( v , u ) | ||
| + | $$ | ||
and the Jacobi identity | and the Jacobi identity | ||
| − | + | $$ | |
| + | ( u , ( v , w ) ) + | ||
| + | ( v , ( w , u ) ) + | ||
| + | ( w , ( u , v ) ) = 0 | ||
| + | $$ | ||
holds (see [[#References|[2]]]). | holds (see [[#References|[2]]]). | ||
| − | The Poisson brackets are used in the theory of first-order partial differential equations and are a useful mathematical tool in analytical mechanics (see [[#References|[3]]]–[[#References|[5]]]). For example, if | + | The Poisson brackets are used in the theory of first-order partial differential equations and are a useful mathematical tool in analytical mechanics (see [[#References|[3]]]–[[#References|[5]]]). For example, if $ q $ |
| + | and $ p $ | ||
| + | are canonical variables and a transformation | ||
| − | + | $$ \tag{2 } | |
| + | Q = Q ( q , p ) ,\ \ | ||
| + | P = P ( q , p ) | ||
| + | $$ | ||
| − | is given, where | + | is given, where $ Q = ( Q _ {1} \dots Q _ {n} ) $, |
| + | $ P = ( P _ {1} \dots P _ {n} ) $ | ||
| + | and the $ ( n \times n ) $- | ||
| + | matrices | ||
| − | + | $$ \tag{3 } | |
| + | ( P , P ) ,\ ( Q , Q ) ,\ ( Q , P ) | ||
| + | $$ | ||
| − | are constructed with entries | + | are constructed with entries $ ( P _ {i} , P _ {j} ) $, |
| + | $ ( Q _ {i} , Q _ {j} ) $, | ||
| + | $ ( Q _ {i} , P _ {j} ) $, | ||
| + | respectively, then (2) is a canonical transformation if and only if the first two matrices in (3) are zero and the third is the unit matrix. | ||
| − | The Poisson brackets, computed for the case when | + | The Poisson brackets, computed for the case when $ u $ |
| + | and $ v $ | ||
| + | are replaced in (1) by some pair of coordinate functions in $ q $ | ||
| + | and $ p $, | ||
| + | are also called fundamental brackets. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Poisson, ''J. Ecole Polytechn.'' , '''8''' (1809) pp. 266–344</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.G.J. Jacobi, "Nova methodus, aequationes differentiales partiales primi ordinis inter numurum variabilium quemcunque propositas integrandi" ''J. Reine Angew. Math.'' , '''60''' (1862) pp. 1–181</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, "Analytical dynamics of particles and rigid bodies" , Dover, reprint (1944)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.I. Lur'e, "Analytical mechanics" , Moscow (1961) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Goldstein, "Classical mechanics" , Addison-Wesley (1957)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Poisson, ''J. Ecole Polytechn.'' , '''8''' (1809) pp. 266–344</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.G.J. Jacobi, "Nova methodus, aequationes differentiales partiales primi ordinis inter numurum variabilium quemcunque propositas integrandi" ''J. Reine Angew. Math.'' , '''60''' (1862) pp. 1–181</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, "Analytical dynamics of particles and rigid bodies" , Dover, reprint (1944)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.I. Lur'e, "Analytical mechanics" , Moscow (1961) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Goldstein, "Classical mechanics" , Addison-Wesley (1957)</TD></TR></table> | ||
| + | ====Comments==== | ||
| + | Other basic properties of Poisson brackets are invariance under canonical transformations and the fact that $ ( F, H) $ | ||
| + | expresses the derivative of $ F( q, p) $ | ||
| + | along trajectories, if $ H $ | ||
| + | is the [[Hamiltonian|Hamiltonian]], so that the corresponding Hamiltonian equations are $ \dot{q} _ {i} = ( q _ {i} , H) $, | ||
| + | $ \dot{p} _ {i} =( p _ {i} , H) $, | ||
| + | which for a "standard" Hamiltonian of the form $ H=( \sum p _ {i} ^ {2} )/2+ V( q) $ | ||
| + | gives back $ \dot{q} _ {i} = p _ {i} $, | ||
| + | $ \dot{p} _ {i} = - \partial H/ \partial q _ {i} $. | ||
| + | Therefore $ ( F, H) $ | ||
| + | expresses a conservation law, i.e. $ F $ | ||
| + | is a conserved quantity. | ||
| + | |||
| + | The Poisson brackets may be defined for functionals depending on a function $ q( x) $, | ||
| + | as | ||
| + | $$ | ||
| + | F[ q] = \int\limits _ {- \infty } ^ \infty \widetilde{F} ( q ,q ^ {(} 1) , q ^ {(} 2) ,\dots) dx, | ||
| + | $$ | ||
| − | + | with $ q ^ {(} n) = d ^ {n} q/dx ^ {n} $. | |
| − | |||
| − | + | One has | |
| − | + | $$ | |
| + | ( F, G) = \int\limits _ {- \infty } ^ \infty | ||
| + | \frac{\delta \widetilde{F} }{\delta q } | ||
| − | + | \frac{d}{dx} | |
| + | |||
| + | \frac{\delta \widetilde{G} }{\delta q } | ||
| + | dx, | ||
| + | $$ | ||
| − | + | with $ {\delta \widetilde{F} } / {\delta q } $, | |
| + | $ {\delta \widetilde{G} } / {\delta q } $ | ||
| + | variational derivatives, i.e. | ||
| − | + | $$ | |
| − | + | \frac{\delta \widetilde{F} }{\delta q } | |
| + | = \sum \left ( - | ||
| + | \frac{d}{dx} | ||
| + | \right ) ^ {n} | ||
| − | + | \frac{\partial \widetilde{F} }{\partial q ^ {(} n) } | |
| + | . | ||
| + | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.C. Newell, "Solitons in mathematical physics" , SIAM (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin (1978)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "Lectures in analytical mechanics" , MIR (1975) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.C. Newell, "Solitons in mathematical physics" , SIAM (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin (1978)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "Lectures in analytical mechanics" , MIR (1975) (Translated from Russian)</TD></TR></table> | ||
Revision as of 08:06, 6 June 2020
The differential expression
$$ \tag{1 } ( u , v ) = \ \sum _ { i= } 1 ^ { n } \left ( \frac{\partial u }{\partial q _ {i} } \frac{\partial v }{\partial p _ {i} } - \frac{\partial u }{\partial p _ {i} } \frac{\partial v }{\partial q _ {i} } \right ) , $$
depending on two functions $ u ( q , p ) $ and $ v ( q , p ) $ of $ 2n $ variables $ q = ( q _ {1} \dots q _ {n} ) $, $ p = ( p _ {1} \dots p _ {n} ) $. The Poisson brackets, introduced by S. Poisson [1], are a particular case of the Jacobi brackets. The Poisson brackets are a bilinear form in the functions $ u $ and $ v $, such that
$$ ( u , v ) = - ( v , u ) $$
and the Jacobi identity
$$ ( u , ( v , w ) ) + ( v , ( w , u ) ) + ( w , ( u , v ) ) = 0 $$
holds (see [2]).
The Poisson brackets are used in the theory of first-order partial differential equations and are a useful mathematical tool in analytical mechanics (see [3]–[5]). For example, if $ q $ and $ p $ are canonical variables and a transformation
$$ \tag{2 } Q = Q ( q , p ) ,\ \ P = P ( q , p ) $$
is given, where $ Q = ( Q _ {1} \dots Q _ {n} ) $, $ P = ( P _ {1} \dots P _ {n} ) $ and the $ ( n \times n ) $- matrices
$$ \tag{3 } ( P , P ) ,\ ( Q , Q ) ,\ ( Q , P ) $$
are constructed with entries $ ( P _ {i} , P _ {j} ) $, $ ( Q _ {i} , Q _ {j} ) $, $ ( Q _ {i} , P _ {j} ) $, respectively, then (2) is a canonical transformation if and only if the first two matrices in (3) are zero and the third is the unit matrix.
The Poisson brackets, computed for the case when $ u $ and $ v $ are replaced in (1) by some pair of coordinate functions in $ q $ and $ p $, are also called fundamental brackets.
References
| [1] | S. Poisson, J. Ecole Polytechn. , 8 (1809) pp. 266–344 |
| [2] | C.G.J. Jacobi, "Nova methodus, aequationes differentiales partiales primi ordinis inter numurum variabilium quemcunque propositas integrandi" J. Reine Angew. Math. , 60 (1862) pp. 1–181 |
| [3] | E.T. Whittaker, "Analytical dynamics of particles and rigid bodies" , Dover, reprint (1944) |
| [4] | A.I. Lur'e, "Analytical mechanics" , Moscow (1961) (In Russian) |
| [5] | H. Goldstein, "Classical mechanics" , Addison-Wesley (1957) |
Comments
Other basic properties of Poisson brackets are invariance under canonical transformations and the fact that $ ( F, H) $ expresses the derivative of $ F( q, p) $ along trajectories, if $ H $ is the Hamiltonian, so that the corresponding Hamiltonian equations are $ \dot{q} _ {i} = ( q _ {i} , H) $, $ \dot{p} _ {i} =( p _ {i} , H) $, which for a "standard" Hamiltonian of the form $ H=( \sum p _ {i} ^ {2} )/2+ V( q) $ gives back $ \dot{q} _ {i} = p _ {i} $, $ \dot{p} _ {i} = - \partial H/ \partial q _ {i} $. Therefore $ ( F, H) $ expresses a conservation law, i.e. $ F $ is a conserved quantity.
The Poisson brackets may be defined for functionals depending on a function $ q( x) $, as
$$ F[ q] = \int\limits _ {- \infty } ^ \infty \widetilde{F} ( q ,q ^ {(} 1) , q ^ {(} 2) ,\dots) dx, $$
with $ q ^ {(} n) = d ^ {n} q/dx ^ {n} $.
One has
$$ ( F, G) = \int\limits _ {- \infty } ^ \infty \frac{\delta \widetilde{F} }{\delta q } \frac{d}{dx} \frac{\delta \widetilde{G} }{\delta q } dx, $$
with $ {\delta \widetilde{F} } / {\delta q } $, $ {\delta \widetilde{G} } / {\delta q } $ variational derivatives, i.e.
$$ \frac{\delta \widetilde{F} }{\delta q } = \sum \left ( - \frac{d}{dx} \right ) ^ {n} \frac{\partial \widetilde{F} }{\partial q ^ {(} n) } . $$
References
| [a1] | A.C. Newell, "Solitons in mathematical physics" , SIAM (1985) |
| [a2] | V.I. Arnol'd, "Mathematical methods of classical mechanics" , Springer (1978) (Translated from Russian) |
| [a3] | R. Abraham, J.E. Marsden, "Foundations of mechanics" , Benjamin (1978) |
| [a4] | F.R. [F.R. Gantmakher] Gantmacher, "Lectures in analytical mechanics" , MIR (1975) (Translated from Russian) |
Poisson brackets. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_brackets&oldid=18628