|
|
Line 1: |
Line 1: |
− | A quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768601.png" /> is given by two sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768602.png" /> and two mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768603.png" />; the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768604.png" /> are called vertices or points, those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768605.png" /> arrows; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768606.png" /> is an arrow, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768607.png" /> is called its start vertex, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768608.png" /> its end vertex, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768609.png" /> is said to go from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686010.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686011.png" />, written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686012.png" />. (Thus, a quiver is nothing else than a directed graph with possibly multiple arrows and loops (cf. [[Graph, oriented|Graph, oriented]]), or a diagram scheme in the sense of A. Grothendieck; the word "quiver" is due to P. Gabriel.) Given a quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686013.png" />, there is the opposite quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686014.png" />, with the same set of vertices but with the reversed orientation for all the arrows.
| + | <!-- |
| + | q0768601.png |
| + | $#A+1 = 171 n = 0 |
| + | $#C+1 = 171 : ~/encyclopedia/old_files/data/Q076/Q.0706860 Quiver |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Given a quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686015.png" />, a path in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686016.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686017.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686019.png" /> are arrows with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686021.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686022.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686023.png" />; a path in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686024.png" /> of length 0 is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686025.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686027.png" /> is a path, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686028.png" /> is called its start vertex, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686029.png" /> its end vertex; paths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686030.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686031.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686032.png" /> are called cyclic paths.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686033.png" /> be a field. The path algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686034.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686035.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686036.png" /> is the free vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686037.png" /> with as basis the set of paths in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686038.png" />, and with distributive multiplication given on the basis by
| + | A quiver $ Q = ( Q _ {0} , Q _ {1} , s, e) $ |
| + | is given by two sets $ Q _ {0} , Q _ {1} $ |
| + | and two mappings $ s, e: Q _ {1} \rightarrow Q _ {0} $; |
| + | the elements of $ Q _ {0} $ |
| + | are called vertices or points, those of $ Q _ {1} $ |
| + | arrows; if $ \alpha $ |
| + | is an arrow, then $ s ( \alpha ) $ |
| + | is called its start vertex, $ e ( \alpha ) $ |
| + | its end vertex, and $ \alpha $ |
| + | is said to go from $ s( \alpha ) $ |
| + | to $ e ( \alpha ) $, |
| + | written as $ \alpha : s( \alpha ) \rightarrow e ( \alpha ) $. |
| + | (Thus, a quiver is nothing else than a directed graph with possibly multiple arrows and loops (cf. [[Graph, oriented|Graph, oriented]]), or a diagram scheme in the sense of A. Grothendieck; the word "quiver" is due to P. Gabriel.) Given a quiver $ Q = ( Q _ {0} , Q _ {1} , s , e ) $, |
| + | there is the opposite quiver $ Q ^ {*} = ( Q _ {0} , Q _ {1} , e, s ) $, |
| + | with the same set of vertices but with the reversed orientation for all the arrows. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686039.png" /></td> </tr></table>
| + | Given a quiver $ Q $, |
| + | a path in $ Q $ |
| + | of length $ l \geq 1 $ |
| + | is of the form $ ( x | \alpha _ {1} \dots \alpha _ {l} | y ) $, |
| + | where $ \alpha _ {i} $ |
| + | are arrows with $ x = s( \alpha _ {1} ) $, |
| + | $ e ( \alpha _ {i} ) = s( \alpha _ {i+} 1 ) $ |
| + | for $ 1 \leq i < l $, |
| + | and $ e ( \alpha _ {l} ) = y $; |
| + | a path in $ Q $ |
| + | of length 0 is of the form $ ( x \mid x) $ |
| + | with $ x \in Q _ {0} $. |
| + | If $ \omega = ( x | \alpha _ {1} \dots \alpha _ {l} | y ) $ |
| + | is a path, then $ x = s( \omega ) $ |
| + | is called its start vertex, $ y = e( \omega ) $ |
| + | its end vertex; paths $ \omega $ |
| + | of length $ \geq 1 $ |
| + | with $ s( \omega ) = e( \omega ) $ |
| + | are called cyclic paths. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686040.png" /></td> </tr></table>
| + | Let $ k $ |
| + | be a field. The path algebra $ kQ $ |
| + | of $ Q $ |
| + | over $ k $ |
| + | is the free vector space over $ k $ |
| + | with as basis the set of paths in $ Q $, |
| + | and with distributive multiplication given on the basis by |
| | | |
− | The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686041.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686042.png" /> are primitive and orthogonal idempotents, and in case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686043.png" /> is finite, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686044.png" /> is the unit element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686045.png" />. Note that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686046.png" /> is finite-dimensional if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686047.png" /> is finite and has no cyclic path.
| + | $$ |
| + | ( x | \alpha _ {1} \dots \alpha _ {l} | y) \cdot |
| + | ( x ^ \prime | \alpha _ {1} ^ \prime \dots \alpha _ {l ^ \prime } ^ \prime | |
| + | y ^ \prime ) = |
| + | $$ |
| | | |
− | Recall that a ring of global dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686048.png" /> is said to be hereditary, and a finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686049.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686050.png" /> with radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686051.png" /> is said to be split basic provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686053.png" /> is a product of copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686054.png" />. The path algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686055.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686056.png" /> a finite quiver without a cyclic path are precisely the finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686057.png" />-algebras which are hereditary and split basic.
| + | $$ |
| + | = \ |
| + | \left \{ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686058.png" /> be a quiver and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686059.png" /> a field. A representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686060.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686061.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686062.png" /> is given by a family of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686063.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686064.png" />) and a family of linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686065.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686066.png" />). Given two representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686067.png" />, a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686068.png" /> is given by linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686069.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686070.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686071.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686072.png" /> be finite. The category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686073.png" /> of right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686074.png" />-modules is equivalent to the category of representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686075.png" /> (provided one applies all the vector space mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686076.png" />, as well as the module homomorphisms in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686077.png" />, on the right), and usually one identifies these categories. For any vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686078.png" />, there is the one-dimensional representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686079.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686080.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686081.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686082.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686083.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686084.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686085.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686086.png" /> is equal to the number of arrows <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686087.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686088.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686089.png" />. Given a finite-dimensional representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686090.png" />, its dimension vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686091.png" /> has, by definition, integral coordinates: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686092.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686093.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686094.png" /> is called the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686095.png" />. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686096.png" /> has no cyclic path, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686097.png" /> is just the Jordan–Hölder multiplicity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686098.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686099.png" />.
| + | The elements $ ( x \mid x ) $ |
| + | with $ x \in Q _ {0} $ |
| + | are primitive and orthogonal idempotents, and in case $ Q _ {0} $ |
| + | is finite, $ 1 = \sum _ {x \in Q _ {0} } ( x \mid x) $ |
| + | is the unit element of $ kQ $. |
| + | Note that $ k Q $ |
| + | is finite-dimensional if and only if $ Q $ |
| + | is finite and has no cyclic path. |
| | | |
− | A finite quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860100.png" /> is called representation-finite, tame or wild if the path algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860101.png" /> has this property. A connected quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860102.png" /> is representation-finite if and only if the underlying graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860103.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860104.png" /> (obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860105.png" /> by deleting the orientation of the edges) is a [[Dynkin diagram|Dynkin diagram]] of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860108.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860110.png" />, see [[#References|[a4]]], [[#References|[a1]]]; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860111.png" /> is tame if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860112.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860114.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860115.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860116.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860117.png" />, see [[#References|[a3]]], [[#References|[a8]]]. More precisely, recall that an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860118.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860119.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860120.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860121.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860122.png" /> is called a symmetric generalized Cartan matrix [[#References|[a6]]]. To a symmetric generalized Cartan <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860123.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860124.png" /> one associates the following quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860125.png" />: its set of vertices is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860126.png" />, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860127.png" /> one draws <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860128.png" /> arrows from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860129.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860130.png" />. Note that the quivers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860131.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860132.png" /> a symmetric generalized Cartan matrix are precisely the quivers without a cyclic path.
| + | Recall that a ring of global dimension $ \leq 1 $ |
| + | is said to be hereditary, and a finite-dimensional $ k $- |
| + | algebra $ A $ |
| + | with radical $ N $ |
| + | is said to be split basic provided $ A/N $ |
| + | is a product of copies of $ k $. |
| + | The path algebras $ kQ $ |
| + | with $ Q $ |
| + | a finite quiver without a cyclic path are precisely the finite-dimensional $ k $- |
| + | algebras which are hereditary and split basic. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860133.png" /> be a symmetric generalized Cartan matrix. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860134.png" /> is an indecomposable representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860135.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860136.png" /> is a positive [[Root|root]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860137.png" />, and all positive roots are obtained in this way; the number of isomorphism classes of indecomposable representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860138.png" /> with fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860139.png" /> depends on whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860140.png" /> is a real root (then there is just one class) or an imaginary root [[#References|[a7]]]. | + | Let $ Q $ |
| + | be a quiver and $ k $ |
| + | a field. A representation $ V = ( V _ {x} , V _ \alpha ) $ |
| + | of $ Q $ |
| + | over $ k $ |
| + | is given by a family of vector spaces $ V _ {x} $( |
| + | $ x \in Q _ {0} $) |
| + | and a family of linear mappings $ V _ \alpha : V _ {s( \alpha ) } \rightarrow V _ {e( \alpha ) } $( |
| + | $ \alpha \in Q _ {1} $). |
| + | Given two representations $ V, V ^ \prime $, |
| + | a mapping $ f = ( f _ {x} ): V \rightarrow V ^ \prime $ |
| + | is given by linear mappings $ f _ {x} : V _ {x} \rightarrow V _ {x} ^ \prime $ |
| + | such that for any $ \alpha \in Q _ {1} $ |
| + | one has $ f _ {s ( \alpha ) } V _ \alpha ^ \prime = V _ \alpha f _ {e( \alpha ) } $. |
| + | Let $ Q $ |
| + | be finite. The category $ \mathop{\rm mod} kQ $ |
| + | of right $ kQ $- |
| + | modules is equivalent to the category of representations of $ Q $( |
| + | provided one applies all the vector space mappings $ V _ \alpha , f _ {x} $, |
| + | as well as the module homomorphisms in $ \mathop{\rm mod} kQ $, |
| + | on the right), and usually one identifies these categories. For any vertex $ x \in Q _ {0} $, |
| + | there is the one-dimensional representation $ S( x) $ |
| + | of $ Q $ |
| + | defined by $ S( x) _ {x} = k $, |
| + | $ S ( x) _ {y} = 0 $ |
| + | for $ y \neq x \in Q _ {0} $ |
| + | and $ S( x) _ \alpha = 0 $ |
| + | for $ \alpha \in Q _ {1} $. |
| + | Then $ \mathop{\rm dim} _ {k} \mathop{\rm Ext} ^ {1} ( S( i), S( j)) $ |
| + | is equal to the number of arrows $ \alpha $ |
| + | with $ s( \alpha ) = i $ |
| + | and $ e ( \alpha ) = j $. |
| + | Given a finite-dimensional representation $ V $, |
| + | its dimension vector $ bold \mathop{\rm dim} V $ |
| + | has, by definition, integral coordinates: $ ( bold \mathop{\rm dim} V) _ {x} = \mathop{\rm dim} _ {k} V _ {x} $ |
| + | for $ x \in Q _ {0} $; |
| + | and $ \sum _ {x \in Q _ {0} } ( bold \mathop{\rm dim} V ) _ {x} $ |
| + | is called the dimension of $ V $. |
| + | In case $ Q $ |
| + | has no cyclic path, $ ( bold \mathop{\rm dim} V ) _ {x} $ |
| + | is just the Jordan–Hölder multiplicity of $ S( x) $ |
| + | in $ V $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860141.png" /> be a quiver. A non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860142.png" />-linear combination of paths of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860143.png" /> with the same start vertex and the same end vertex is called a relation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860144.png" />. Given a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860145.png" /> of relations, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860146.png" /> be the ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860147.png" /> generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860148.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860149.png" /> is said to be an algebra defined by a quiver with relations. A finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860150.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860151.png" /> is isomorphic to one defined by a quiver with relations if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860152.png" /> is split basic. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860153.png" /> is algebraically closed, then any finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860154.png" />-algebra is Morita equivalent to one defined by a quiver with relations. All representation-finite and certain minimal representation-infinite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860155.png" />-algebras over an algebraically closed field are defined by quivers with relations of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860156.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860157.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860158.png" /> are paths (the multiplicative basis theorem, [[#References|[a2]]]); this shows that the study of representation-finite algebras is a purely combinatorial problem; it was a decisive step for the proof of the second Brauer–Thrall conjecture (see [[Representation of an associative algebra|Representation of an associative algebra]]).
| + | A finite quiver $ Q $ |
| + | is called representation-finite, tame or wild if the path algebra $ kQ $ |
| + | has this property. A connected quiver $ Q $ |
| + | is representation-finite if and only if the underlying graph $ \overline{Q}\; $ |
| + | of $ Q $( |
| + | obtained from $ Q $ |
| + | by deleting the orientation of the edges) is a [[Dynkin diagram|Dynkin diagram]] of the form $ A _ {n} $, |
| + | $ D _ {n} $, |
| + | $ E _ {6} $, |
| + | $ E _ {7} $, |
| + | $ E _ {8} $, |
| + | see [[#References|[a4]]], [[#References|[a1]]]; and $ Q $ |
| + | is tame if and only if $ \overline{Q}\; $ |
| + | is of the form $ {\widetilde{A} } _ {n} $, |
| + | $ {\widetilde{D} } _ {n} $, |
| + | $ {\widetilde{E} } _ {6} $, |
| + | $ {\widetilde{E} } _ {7} $, |
| + | $ {\widetilde{E} } _ {8} $, |
| + | see [[#References|[a3]]], [[#References|[a8]]]. More precisely, recall that an $ ( n \times n ) $- |
| + | matrix $ ( a _ {ij} ) _ {ij} $ |
| + | with $ a _ {ii} = 2 $ |
| + | and $ a _ {ij} = a _ {ji} \leq 0 $ |
| + | for all $ i \neq j $ |
| + | is called a symmetric generalized Cartan matrix [[#References|[a6]]]. To a symmetric generalized Cartan $ ( n \times n ) $- |
| + | matrix $ \Delta = ( a _ {ij} ) _ {ij} $ |
| + | one associates the following quiver $ Q ( \Delta ) $: |
| + | its set of vertices is $ Q( \Delta ) _ {0} = \{ 1 \dots n \} $, |
| + | and for $ 1 \leq i < j \leq n $ |
| + | one draws $ - a _ {ij} $ |
| + | arrows from $ i $ |
| + | to $ j $. |
| + | Note that the quivers of the form $ Q( \Delta ) $ |
| + | with $ \Delta $ |
| + | a symmetric generalized Cartan matrix are precisely the quivers without a cyclic path. |
| | | |
− | The representation theory of quivers has been developed in order to deal effectively with certain types of matrix problems over a fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860159.png" /> as they arise in algebra, geometry and analysis. Typical tame quivers are the Kronecker quiver
| + | Let $ \Delta $ |
| + | be a symmetric generalized Cartan matrix. If $ V $ |
| + | is an indecomposable representation of $ Q ( \Delta ) $, |
| + | then $ bold \mathop{\rm dim} V $ |
| + | is a positive [[Root|root]] for $ \Delta $, |
| + | and all positive roots are obtained in this way; the number of isomorphism classes of indecomposable representations $ V $ |
| + | with fixed $ bold \mathop{\rm dim} V $ |
| + | depends on whether $ bold \mathop{\rm dim} V $ |
| + | is a real root (then there is just one class) or an imaginary root [[#References|[a7]]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860160.png" /></td> </tr></table>
| + | Let $ Q $ |
| + | be a quiver. A non-zero $ k $- |
| + | linear combination of paths of length $ \geq 2 $ |
| + | with the same start vertex and the same end vertex is called a relation on $ Q $. |
| + | Given a set $ \{ \rho _ {i} \} _ {i} $ |
| + | of relations, let $ \langle \rho _ {i} \mid i \rangle $ |
| + | be the ideal in $ kQ $ |
| + | generated $ \{ \rho _ {i} \} _ {i} $. |
| + | Then $ A = kQ / \langle \rho _ {i} \mid i \rangle $ |
| + | is said to be an algebra defined by a quiver with relations. A finite-dimensional $ k $- |
| + | algebra $ A $ |
| + | is isomorphic to one defined by a quiver with relations if and only if $ A $ |
| + | is split basic. Thus, if $ k $ |
| + | is algebraically closed, then any finite-dimensional $ k $- |
| + | algebra is Morita equivalent to one defined by a quiver with relations. All representation-finite and certain minimal representation-infinite $ k $- |
| + | algebras over an algebraically closed field are defined by quivers with relations of the form $ \omega $, |
| + | and $ \omega _ {1} - \omega _ {2} $, |
| + | where $ \omega , \omega _ {1} , \omega _ {2} $ |
| + | are paths (the multiplicative basis theorem, [[#References|[a2]]]); this shows that the study of representation-finite algebras is a purely combinatorial problem; it was a decisive step for the proof of the second Brauer–Thrall conjecture (see [[Representation of an associative algebra|Representation of an associative algebra]]). |
| | | |
− | its representations are just the matrix pencils (pairs of matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860161.png" /> of the same size, considered with respect to the equivalence relation: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860162.png" /> if and only if there are invertible matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860163.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860164.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860165.png" />), and the four-subspace quiver
| + | The representation theory of quivers has been developed in order to deal effectively with certain types of matrix problems over a fixed field $ k $ |
| + | as they arise in algebra, geometry and analysis. Typical tame quivers are the Kronecker quiver |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860166.png" /></td> </tr></table>
| + | $$ |
| + | \circ \ \ \circ , |
| + | $$ |
| | | |
− | In general, the representation theory of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860168.png" />-subspace quiver
| + | its representations are just the matrix pencils (pairs of matrices $ A , B $ |
| + | of the same size, considered with respect to the equivalence relation: $ ( A, B) \sim ( A ^ \prime , B ^ \prime ) $ |
| + | if and only if there are invertible matrices $ P , Q $ |
| + | with $ A ^ \prime = PAQ $, |
| + | $ B ^ \prime = PBQ $), |
| + | and the four-subspace quiver |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860169.png" /></td> </tr></table>
| + | $$ |
| | | |
− | deals with the mutual position of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860170.png" />-subspaces in a vector space.
| + | In general, the representation theory of the $ n $- |
| + | subspace quiver |
| | | |
− | Using the language of quivers, these problems are transformed to problems dealing with finite-dimensional split basic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860171.png" />-algebras.
| + | $$ |
| | | |
− | In order to deal with an arbitrary finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860172.png" />-algebra one needs the notion of a species (instead of a quiver), see [[#References|[a5]]]. In this way, one deals with vector space problems which involve different fields. The representation-finite species are those corresponding to arbitrary Dynkin diagrams <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860173.png" />, the tame ones correspond to the Euclidean diagrams [[#References|[a9]]]. | + | deals with the mutual position of $ n $- |
| + | subspaces in a vector space. |
| + | |
| + | Using the language of quivers, these problems are transformed to problems dealing with finite-dimensional split basic $ k $- |
| + | algebras. |
| + | |
| + | In order to deal with an arbitrary finite-dimensional $ k $- |
| + | algebra one needs the notion of a species (instead of a quiver), see [[#References|[a5]]]. In this way, one deals with vector space problems which involve different fields. The representation-finite species are those corresponding to arbitrary Dynkin diagrams $ ( A _ {n} , B _ {n} , C _ {n} \dots G _ {2} ) $, |
| + | the tame ones correspond to the Euclidean diagrams [[#References|[a9]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.N. Bernstein, I.M. Gel'fand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' : 2 (1973) pp. 17–32 ''Uspekhi Mat. Nauk'' , '''28''' : 2 (1973) pp. 19–34</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Bautista, P. Gabriel, A. Rojter, L. Salmeron, "Representation-finite algebras and multiplicative basis" ''Invent. Math.'' , '''81''' (1985) pp. 217–285</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Donovan, M.R. Freislich, "The representation of finite graphs and associated algebras" ''Carleton Lecture Notes'' , '''5''' (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P. Gabriel, "Unzerlegbare Darstellungen I" ''Manuscripta Math.'' , '''6''' (1972) pp. 71–103</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P. Gabriel, "Indecomposable representations II" , ''Symp. Math. INDAM (Rome, 1971)'' , '''XI''' , Acad. Press (1973) pp. 81–104</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> V.G. Kac, "Infinite dimensional Lie algebras" , Cambridge Univ. Press (1985)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> V.G. Kac, "Infinite root systems, representations of graphs and invariant theory" ''Invent. Math.'' , '''56''' (1980) pp. 57–92</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> L.A. Nazarova, "Representations of quivers of infinite type" ''Math. USSR Izv.'' , '''7''' (1973) pp. 749–792 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''37''' (1973) pp. 752–791</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" ''Memoirs Amer. Math. Soc.'' , '''173''' (1976)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.N. Bernstein, I.M. Gel'fand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' : 2 (1973) pp. 17–32 ''Uspekhi Mat. Nauk'' , '''28''' : 2 (1973) pp. 19–34</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Bautista, P. Gabriel, A. Rojter, L. Salmeron, "Representation-finite algebras and multiplicative basis" ''Invent. Math.'' , '''81''' (1985) pp. 217–285</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Donovan, M.R. Freislich, "The representation of finite graphs and associated algebras" ''Carleton Lecture Notes'' , '''5''' (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P. Gabriel, "Unzerlegbare Darstellungen I" ''Manuscripta Math.'' , '''6''' (1972) pp. 71–103</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P. Gabriel, "Indecomposable representations II" , ''Symp. Math. INDAM (Rome, 1971)'' , '''XI''' , Acad. Press (1973) pp. 81–104</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> V.G. Kac, "Infinite dimensional Lie algebras" , Cambridge Univ. Press (1985)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> V.G. Kac, "Infinite root systems, representations of graphs and invariant theory" ''Invent. Math.'' , '''56''' (1980) pp. 57–92</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> L.A. Nazarova, "Representations of quivers of infinite type" ''Math. USSR Izv.'' , '''7''' (1973) pp. 749–792 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''37''' (1973) pp. 752–791</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" ''Memoirs Amer. Math. Soc.'' , '''173''' (1976)</TD></TR></table> |
A quiver $ Q = ( Q _ {0} , Q _ {1} , s, e) $
is given by two sets $ Q _ {0} , Q _ {1} $
and two mappings $ s, e: Q _ {1} \rightarrow Q _ {0} $;
the elements of $ Q _ {0} $
are called vertices or points, those of $ Q _ {1} $
arrows; if $ \alpha $
is an arrow, then $ s ( \alpha ) $
is called its start vertex, $ e ( \alpha ) $
its end vertex, and $ \alpha $
is said to go from $ s( \alpha ) $
to $ e ( \alpha ) $,
written as $ \alpha : s( \alpha ) \rightarrow e ( \alpha ) $.
(Thus, a quiver is nothing else than a directed graph with possibly multiple arrows and loops (cf. Graph, oriented), or a diagram scheme in the sense of A. Grothendieck; the word "quiver" is due to P. Gabriel.) Given a quiver $ Q = ( Q _ {0} , Q _ {1} , s , e ) $,
there is the opposite quiver $ Q ^ {*} = ( Q _ {0} , Q _ {1} , e, s ) $,
with the same set of vertices but with the reversed orientation for all the arrows.
Given a quiver $ Q $,
a path in $ Q $
of length $ l \geq 1 $
is of the form $ ( x | \alpha _ {1} \dots \alpha _ {l} | y ) $,
where $ \alpha _ {i} $
are arrows with $ x = s( \alpha _ {1} ) $,
$ e ( \alpha _ {i} ) = s( \alpha _ {i+} 1 ) $
for $ 1 \leq i < l $,
and $ e ( \alpha _ {l} ) = y $;
a path in $ Q $
of length 0 is of the form $ ( x \mid x) $
with $ x \in Q _ {0} $.
If $ \omega = ( x | \alpha _ {1} \dots \alpha _ {l} | y ) $
is a path, then $ x = s( \omega ) $
is called its start vertex, $ y = e( \omega ) $
its end vertex; paths $ \omega $
of length $ \geq 1 $
with $ s( \omega ) = e( \omega ) $
are called cyclic paths.
Let $ k $
be a field. The path algebra $ kQ $
of $ Q $
over $ k $
is the free vector space over $ k $
with as basis the set of paths in $ Q $,
and with distributive multiplication given on the basis by
$$
( x | \alpha _ {1} \dots \alpha _ {l} | y) \cdot
( x ^ \prime | \alpha _ {1} ^ \prime \dots \alpha _ {l ^ \prime } ^ \prime |
y ^ \prime ) =
$$
$$
= \
\left \{
The elements $ ( x \mid x ) $
with $ x \in Q _ {0} $
are primitive and orthogonal idempotents, and in case $ Q _ {0} $
is finite, $ 1 = \sum _ {x \in Q _ {0} } ( x \mid x) $
is the unit element of $ kQ $.
Note that $ k Q $
is finite-dimensional if and only if $ Q $
is finite and has no cyclic path.
Recall that a ring of global dimension $ \leq 1 $
is said to be hereditary, and a finite-dimensional $ k $-
algebra $ A $
with radical $ N $
is said to be split basic provided $ A/N $
is a product of copies of $ k $.
The path algebras $ kQ $
with $ Q $
a finite quiver without a cyclic path are precisely the finite-dimensional $ k $-
algebras which are hereditary and split basic.
Let $ Q $
be a quiver and $ k $
a field. A representation $ V = ( V _ {x} , V _ \alpha ) $
of $ Q $
over $ k $
is given by a family of vector spaces $ V _ {x} $(
$ x \in Q _ {0} $)
and a family of linear mappings $ V _ \alpha : V _ {s( \alpha ) } \rightarrow V _ {e( \alpha ) } $(
$ \alpha \in Q _ {1} $).
Given two representations $ V, V ^ \prime $,
a mapping $ f = ( f _ {x} ): V \rightarrow V ^ \prime $
is given by linear mappings $ f _ {x} : V _ {x} \rightarrow V _ {x} ^ \prime $
such that for any $ \alpha \in Q _ {1} $
one has $ f _ {s ( \alpha ) } V _ \alpha ^ \prime = V _ \alpha f _ {e( \alpha ) } $.
Let $ Q $
be finite. The category $ \mathop{\rm mod} kQ $
of right $ kQ $-
modules is equivalent to the category of representations of $ Q $(
provided one applies all the vector space mappings $ V _ \alpha , f _ {x} $,
as well as the module homomorphisms in $ \mathop{\rm mod} kQ $,
on the right), and usually one identifies these categories. For any vertex $ x \in Q _ {0} $,
there is the one-dimensional representation $ S( x) $
of $ Q $
defined by $ S( x) _ {x} = k $,
$ S ( x) _ {y} = 0 $
for $ y \neq x \in Q _ {0} $
and $ S( x) _ \alpha = 0 $
for $ \alpha \in Q _ {1} $.
Then $ \mathop{\rm dim} _ {k} \mathop{\rm Ext} ^ {1} ( S( i), S( j)) $
is equal to the number of arrows $ \alpha $
with $ s( \alpha ) = i $
and $ e ( \alpha ) = j $.
Given a finite-dimensional representation $ V $,
its dimension vector $ bold \mathop{\rm dim} V $
has, by definition, integral coordinates: $ ( bold \mathop{\rm dim} V) _ {x} = \mathop{\rm dim} _ {k} V _ {x} $
for $ x \in Q _ {0} $;
and $ \sum _ {x \in Q _ {0} } ( bold \mathop{\rm dim} V ) _ {x} $
is called the dimension of $ V $.
In case $ Q $
has no cyclic path, $ ( bold \mathop{\rm dim} V ) _ {x} $
is just the Jordan–Hölder multiplicity of $ S( x) $
in $ V $.
A finite quiver $ Q $
is called representation-finite, tame or wild if the path algebra $ kQ $
has this property. A connected quiver $ Q $
is representation-finite if and only if the underlying graph $ \overline{Q}\; $
of $ Q $(
obtained from $ Q $
by deleting the orientation of the edges) is a [[Dynkin diagram|Dynkin diagram]] of the form $ A _ {n} $,
$ D _ {n} $,
$ E _ {6} $,
$ E _ {7} $,
$ E _ {8} $,
see [[#References|[a4]]], [[#References|[a1]]]; and $ Q $
is tame if and only if $ \overline{Q}\; $
is of the form $ {\widetilde{A} } _ {n} $,
$ {\widetilde{D} } _ {n} $,
$ {\widetilde{E} } _ {6} $,
$ {\widetilde{E} } _ {7} $,
$ {\widetilde{E} } _ {8} $,
see [[#References|[a3]]], [[#References|[a8]]]. More precisely, recall that an $ ( n \times n ) $-
matrix $ ( a _ {ij} ) _ {ij} $
with $ a _ {ii} = 2 $
and $ a _ {ij} = a _ {ji} \leq 0 $
for all $ i \neq j $
is called a symmetric generalized Cartan matrix [[#References|[a6]]]. To a symmetric generalized Cartan $ ( n \times n ) $-
matrix $ \Delta = ( a _ {ij} ) _ {ij} $
one associates the following quiver $ Q ( \Delta ) $:
its set of vertices is $ Q( \Delta ) _ {0} = \{ 1 \dots n \} $,
and for $ 1 \leq i < j \leq n $
one draws $ - a _ {ij} $
arrows from $ i $
to $ j $.
Note that the quivers of the form $ Q( \Delta ) $
with $ \Delta $
a symmetric generalized Cartan matrix are precisely the quivers without a cyclic path.
Let $ \Delta $
be a symmetric generalized Cartan matrix. If $ V $
is an indecomposable representation of $ Q ( \Delta ) $,
then $ bold \mathop{\rm dim} V $
is a positive [[Root|root]] for $ \Delta $,
and all positive roots are obtained in this way; the number of isomorphism classes of indecomposable representations $ V $
with fixed $ bold \mathop{\rm dim} V $
depends on whether $ bold \mathop{\rm dim} V $
is a real root (then there is just one class) or an imaginary root [[#References|[a7]]].
Let $ Q $
be a quiver. A non-zero $ k $-
linear combination of paths of length $ \geq 2 $
with the same start vertex and the same end vertex is called a relation on $ Q $.
Given a set $ \{ \rho _ {i} \} _ {i} $
of relations, let $ \langle \rho _ {i} \mid i \rangle $
be the ideal in $ kQ $
generated $ \{ \rho _ {i} \} _ {i} $.
Then $ A = kQ / \langle \rho _ {i} \mid i \rangle $
is said to be an algebra defined by a quiver with relations. A finite-dimensional $ k $-
algebra $ A $
is isomorphic to one defined by a quiver with relations if and only if $ A $
is split basic. Thus, if $ k $
is algebraically closed, then any finite-dimensional $ k $-
algebra is Morita equivalent to one defined by a quiver with relations. All representation-finite and certain minimal representation-infinite $ k $-
algebras over an algebraically closed field are defined by quivers with relations of the form $ \omega $,
and $ \omega _ {1} - \omega _ {2} $,
where $ \omega , \omega _ {1} , \omega _ {2} $
are paths (the multiplicative basis theorem, [[#References|[a2]]]); this shows that the study of representation-finite algebras is a purely combinatorial problem; it was a decisive step for the proof of the second Brauer–Thrall conjecture (see [[Representation of an associative algebra|Representation of an associative algebra]]).
The representation theory of quivers has been developed in order to deal effectively with certain types of matrix problems over a fixed field $ k $
as they arise in algebra, geometry and analysis. Typical tame quivers are the Kronecker quiver
$$
\circ \ \ \circ ,
$$
its representations are just the matrix pencils (pairs of matrices $ A , B $
of the same size, considered with respect to the equivalence relation: $ ( A, B) \sim ( A ^ \prime , B ^ \prime ) $
if and only if there are invertible matrices $ P , Q $
with $ A ^ \prime = PAQ $,
$ B ^ \prime = PBQ $),
and the four-subspace quiver
$$
In general, the representation theory of the $ n $-
subspace quiver
$$
deals with the mutual position of $ n $-
subspaces in a vector space.
Using the language of quivers, these problems are transformed to problems dealing with finite-dimensional split basic $ k $-
algebras.
In order to deal with an arbitrary finite-dimensional $ k $-
algebra one needs the notion of a species (instead of a quiver), see [a5]. In this way, one deals with vector space problems which involve different fields. The representation-finite species are those corresponding to arbitrary Dynkin diagrams $ ( A _ {n} , B _ {n} , C _ {n} \dots G _ {2} ) $,
the tame ones correspond to the Euclidean diagrams [a9].
References
[a1] | I.N. Bernstein, I.M. Gel'fand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" Russian Math. Surveys , 28 : 2 (1973) pp. 17–32 Uspekhi Mat. Nauk , 28 : 2 (1973) pp. 19–34 |
[a2] | R. Bautista, P. Gabriel, A. Rojter, L. Salmeron, "Representation-finite algebras and multiplicative basis" Invent. Math. , 81 (1985) pp. 217–285 |
[a3] | P. Donovan, M.R. Freislich, "The representation of finite graphs and associated algebras" Carleton Lecture Notes , 5 (1973) |
[a4] | P. Gabriel, "Unzerlegbare Darstellungen I" Manuscripta Math. , 6 (1972) pp. 71–103 |
[a5] | P. Gabriel, "Indecomposable representations II" , Symp. Math. INDAM (Rome, 1971) , XI , Acad. Press (1973) pp. 81–104 |
[a6] | V.G. Kac, "Infinite dimensional Lie algebras" , Cambridge Univ. Press (1985) |
[a7] | V.G. Kac, "Infinite root systems, representations of graphs and invariant theory" Invent. Math. , 56 (1980) pp. 57–92 |
[a8] | L.A. Nazarova, "Representations of quivers of infinite type" Math. USSR Izv. , 7 (1973) pp. 749–792 Izv. Akad. Nauk SSSR Ser. Mat. , 37 (1973) pp. 752–791 |
[a9] | V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" Memoirs Amer. Math. Soc. , 173 (1976) |