Namespaces
Variants
Actions

Difference between revisions of "Linearly-regular random process"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Stationary stochastic process|stationary stochastic process]] (in the wide sense) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595701.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595702.png" />, for which the regularity condition
+
<!--
 +
l0595701.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/L059/L.0509570 Linearly\AAhregular random process
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595703.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
is satisfied, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595704.png" /> is the mean square closed linear hull of the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595705.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595706.png" />. (Here it is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595707.png" />.) Regularity implies the impossibility of a (linear) prediction of the process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595708.png" /> in the very distant future; more precisely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l0595709.png" /> is the best linear prediction for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957010.png" /> with respect to the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957012.png" />,
+
A [[Stationary stochastic process|stationary stochastic process]] (in the wide sense) $  \xi ( t) $,
 +
$  - \infty < t < \infty $,  
 +
for which the regularity condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957013.png" /></td> </tr></table>
+
$$
 +
\cap _ { t } H _  \xi  ( - \infty , t )  = 0
 +
$$
 +
 
 +
is satisfied, where  $  H _  \xi  ( - \infty , t ) $
 +
is the mean square closed linear hull of the values  $  \xi ( s) $,
 +
$  s \leq  t $.
 +
(Here it is assumed that  $  {\mathsf E} \xi ( t) = 0 $.)
 +
Regularity implies the impossibility of a (linear) prediction of the process  $  \xi ( t) $
 +
in the very distant future; more precisely, if  $  \widehat \xi  ( t + u ) $
 +
is the best linear prediction for  $  \xi ( t + u ) $
 +
with respect to the values  $  \xi ( s) $,
 +
$  s \leq  t $,
 +
 
 +
$$
 +
{\mathsf E} | \xi ( t + u ) - \widehat \xi  ( t + u ) |  ^ {2}  = \
 +
\min _ {\eta \in H _  \xi  ( - \infty , t ) } \
 +
{\mathsf E} | \xi ( t + u ) - \eta |  ^ {2} ,
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957014.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {u \rightarrow \infty }  \widehat \xi  ( t + u )  = 0 .
 +
$$
  
A necessary and sufficient condition for regularity of a (one-dimensional) stationary process is the existence of a [[Spectral density|spectral density]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957015.png" /> such that
+
A necessary and sufficient condition for regularity of a (one-dimensional) stationary process is the existence of a [[Spectral density|spectral density]] $  f ( \lambda ) $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957016.png" /></td> </tr></table>
+
$$
 +
\int\limits _ {- \infty } ^  \infty 
  
The analytic conditions for regularity of multi-dimensional and infinite-dimensional stationary processes are more complicated. In the general case, when the spectral density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957017.png" /> is a positive operator function in Hilbert space, the regularity condition is equivalent to the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957018.png" /> admits a factorization of the form
+
\frac{ \mathop{\rm ln}  f ( \lambda ) }{1 + \lambda  ^ {2} }
 +
  d \lambda  >  - \infty .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957019.png" /></td> </tr></table>
+
The analytic conditions for regularity of multi-dimensional and infinite-dimensional stationary processes are more complicated. In the general case, when the spectral density  $  f ( \lambda ) $
 +
is a positive operator function in Hilbert space, the regularity condition is equivalent to the fact that  $  f ( \lambda ) $
 +
admits a factorization of the form
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957021.png" />, is the boundary value of an operator function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957023.png" />, that is analytic in the lower half-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957025.png" />.
+
$$
 +
f ( \lambda )  = \phi  ^ {*} ( \lambda ) \phi ( \lambda ) ,
 +
$$
  
Every process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957026.png" /> that is stationary in the wide sense admits a decomposition into an orthogonal sum
+
where  $  \phi ( \lambda ) $,
 +
$  - \infty < \lambda < \infty $,
 +
is the boundary value of an operator function  $  \phi ( \lambda + i \mu ) $,
 +
$  \mu \rightarrow 0 $,
 +
that is analytic in the lower half-plane  $  z = \lambda + i \mu $,
 +
$  \mu < 0 $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957027.png" /></td> </tr></table>
+
Every process  $  \zeta ( t) $
 +
that is stationary in the wide sense admits a decomposition into an orthogonal sum
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957028.png" /></td> </tr></table>
+
$$
 +
\zeta ( t)  = \xi ( t) + \eta ( t) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957029.png" /> is a linearly-regular process and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957030.png" /> is a linearly-singular process, that is, a stochastic process that is stationary in the wide sense and for which
+
$$
 +
{\mathsf E} \xi ( t) \overline{ {\eta ( t) }}\;  = 0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957031.png" /></td> </tr></table>
+
where  $  \xi ( t) $
 +
is a linearly-regular process and  $  \eta ( t) $
 +
is a linearly-singular process, that is, a stochastic process that is stationary in the wide sense and for which
 +
 
 +
$$
 +
\cap _ { t } H _  \eta  ( - \infty , t )  = H _  \eta  ( - \infty , \infty ) ;
 +
$$
  
 
also,
 
also,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957032.png" /></td> </tr></table>
+
$$
 +
H _  \xi  ( - \infty , t )  \subset  H _  \zeta  ( - \infty , t ) \ \
 +
\textrm{ and } \  H _  \eta  ( - \infty , t )  \subset  H _  \zeta  ( - \infty , t)
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059570/l05957033.png" />.
+
for all $  t $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.A. Rozanov,  "Stationary random processes" , Holden-Day  (1967)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  Yu.A. Rozanov,  "Innovation processes" , Wiley  (1977)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.A. Rozanov,  "Stationary random processes" , Holden-Day  (1967)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  Yu.A. Rozanov,  "Innovation processes" , Wiley  (1977)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:17, 5 June 2020


A stationary stochastic process (in the wide sense) $ \xi ( t) $, $ - \infty < t < \infty $, for which the regularity condition

$$ \cap _ { t } H _ \xi ( - \infty , t ) = 0 $$

is satisfied, where $ H _ \xi ( - \infty , t ) $ is the mean square closed linear hull of the values $ \xi ( s) $, $ s \leq t $. (Here it is assumed that $ {\mathsf E} \xi ( t) = 0 $.) Regularity implies the impossibility of a (linear) prediction of the process $ \xi ( t) $ in the very distant future; more precisely, if $ \widehat \xi ( t + u ) $ is the best linear prediction for $ \xi ( t + u ) $ with respect to the values $ \xi ( s) $, $ s \leq t $,

$$ {\mathsf E} | \xi ( t + u ) - \widehat \xi ( t + u ) | ^ {2} = \ \min _ {\eta \in H _ \xi ( - \infty , t ) } \ {\mathsf E} | \xi ( t + u ) - \eta | ^ {2} , $$

then

$$ \lim\limits _ {u \rightarrow \infty } \widehat \xi ( t + u ) = 0 . $$

A necessary and sufficient condition for regularity of a (one-dimensional) stationary process is the existence of a spectral density $ f ( \lambda ) $ such that

$$ \int\limits _ {- \infty } ^ \infty \frac{ \mathop{\rm ln} f ( \lambda ) }{1 + \lambda ^ {2} } d \lambda > - \infty . $$

The analytic conditions for regularity of multi-dimensional and infinite-dimensional stationary processes are more complicated. In the general case, when the spectral density $ f ( \lambda ) $ is a positive operator function in Hilbert space, the regularity condition is equivalent to the fact that $ f ( \lambda ) $ admits a factorization of the form

$$ f ( \lambda ) = \phi ^ {*} ( \lambda ) \phi ( \lambda ) , $$

where $ \phi ( \lambda ) $, $ - \infty < \lambda < \infty $, is the boundary value of an operator function $ \phi ( \lambda + i \mu ) $, $ \mu \rightarrow 0 $, that is analytic in the lower half-plane $ z = \lambda + i \mu $, $ \mu < 0 $.

Every process $ \zeta ( t) $ that is stationary in the wide sense admits a decomposition into an orthogonal sum

$$ \zeta ( t) = \xi ( t) + \eta ( t) , $$

$$ {\mathsf E} \xi ( t) \overline{ {\eta ( t) }}\; = 0 , $$

where $ \xi ( t) $ is a linearly-regular process and $ \eta ( t) $ is a linearly-singular process, that is, a stochastic process that is stationary in the wide sense and for which

$$ \cap _ { t } H _ \eta ( - \infty , t ) = H _ \eta ( - \infty , \infty ) ; $$

also,

$$ H _ \xi ( - \infty , t ) \subset H _ \zeta ( - \infty , t ) \ \ \textrm{ and } \ H _ \eta ( - \infty , t ) \subset H _ \zeta ( - \infty , t) $$

for all $ t $.

References

[1] Yu.A. Rozanov, "Stationary random processes" , Holden-Day (1967) (Translated from Russian)
[2] Yu.A. Rozanov, "Innovation processes" , Wiley (1977) (Translated from Russian)

Comments

One says more often purely non-deterministic process (in the wide sense) instead of linearly-regular process. The decomposition of a (second-order) process in a regular and a singular part (as in the main article) is known as the Wold decomposition.

References

[a1] I.A. Ibragimov, Yu.V. Linnik, "Independent and stationary sequences of random variables" , Wolters-Noordhoff (1971) (Translated from Russian)
[a2] J.L. Doob, "Stochastic processes" , Chapman & Hall (1953)
[a3] I.A. Ibragimov, Yu.A. Rozanov, "Gaussian random processes" , Springer (1978) (Translated from Russian)
How to Cite This Entry:
Linearly-regular random process. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linearly-regular_random_process&oldid=18417
This article was adapted from an original article by Yu.A. Rozanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article