Difference between revisions of "Van der Waerden test"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | v0960401.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/V096/V.0906040 van der Waerden test | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Non-parametric test|non-parametric test]] for the homogeneity of two samples $ Y _ {1} \dots Y _ {n} $ | |
+ | and $ Z _ {1} \dots Z _ {m} $, | ||
+ | based on the [[Rank statistic|rank statistic]] | ||
− | + | $$ | |
+ | X = \sum _ {i = 1 } ^ { m } | ||
+ | \Psi \left ( | ||
+ | \frac{s ( r _ {i} ) }{m + n + 1 } | ||
+ | \right ) , | ||
+ | $$ | ||
− | and | + | where $ r _ {i} $ |
+ | are the ranks (ordinal numbers) of the random variables $ Z _ {i} $ | ||
+ | in the series of joint order statistics of $ Y _ {j} $ | ||
+ | and $ Z _ {i} $; | ||
+ | the function $ s( r) $ | ||
+ | is defined by the pre-selected permutation | ||
+ | |||
+ | $$ | ||
+ | \left ( \begin{array}{c} | ||
+ | 1 \\ | ||
+ | s ( 1) | ||
+ | \end{array} | ||
+ | \begin{array}{c} | ||
+ | \dots \\ | ||
+ | \dots | ||
+ | \end{array} | ||
+ | |||
+ | \begin{array}{c} | ||
+ | ( m + n) \\ | ||
+ | s ( m + n) | ||
+ | \end{array} | ||
+ | \right ) , | ||
+ | $$ | ||
+ | |||
+ | and $ \Psi ( p) $ | ||
+ | is the inverse function of the [[Normal distribution|normal distribution]] with parameters $ ( 0, 1) $. | ||
+ | The permutation is so chosen that for a given alternative hypothesis the test will be the strongest. If $ m + n \rightarrow \infty $, | ||
+ | irrespective of the behaviour of $ m $ | ||
+ | and $ n $ | ||
+ | individually, the asymptotic distribution of $ X $ | ||
+ | is normal. If $ Y $ | ||
+ | and $ Z $ | ||
+ | are independent and normally distributed with equal variances, the test for the alternative choice $ {\mathsf P} ( Y < T) < {\mathsf P} ( Z < T) $ | ||
+ | or $ {\mathsf P} ( Y \langle T) \rangle {\mathsf P} ( Z < T) $( | ||
+ | in this case $ s( r) \equiv r $) | ||
+ | is asymptotically equally as strong as the [[Student test|Student test]]. Introduced by B.L. van der Waerden [[#References|[1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.L. van der Waerden, "Order tests for the two-sample problem and their power" ''Proc. Kon. Nederl. Akad. Wetensch. A'' , '''55''' (1952) pp. 453–458</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.L. van der Waerden, "Order tests for the two-sample problem and their power" ''Proc. Kon. Nederl. Akad. Wetensch. A'' , '''55''' (1952) pp. 453–458</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.G. Kendall, A. Stuart, "The advanced theory of statistics" , '''2. Inference and relationship''' , Griffin (1979)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.G. Kendall, A. Stuart, "The advanced theory of statistics" , '''2. Inference and relationship''' , Griffin (1979)</TD></TR></table> |
Latest revision as of 08:27, 6 June 2020
A non-parametric test for the homogeneity of two samples $ Y _ {1} \dots Y _ {n} $
and $ Z _ {1} \dots Z _ {m} $,
based on the rank statistic
$$ X = \sum _ {i = 1 } ^ { m } \Psi \left ( \frac{s ( r _ {i} ) }{m + n + 1 } \right ) , $$
where $ r _ {i} $ are the ranks (ordinal numbers) of the random variables $ Z _ {i} $ in the series of joint order statistics of $ Y _ {j} $ and $ Z _ {i} $; the function $ s( r) $ is defined by the pre-selected permutation
$$ \left ( \begin{array}{c} 1 \\ s ( 1) \end{array} \begin{array}{c} \dots \\ \dots \end{array} \begin{array}{c} ( m + n) \\ s ( m + n) \end{array} \right ) , $$
and $ \Psi ( p) $ is the inverse function of the normal distribution with parameters $ ( 0, 1) $. The permutation is so chosen that for a given alternative hypothesis the test will be the strongest. If $ m + n \rightarrow \infty $, irrespective of the behaviour of $ m $ and $ n $ individually, the asymptotic distribution of $ X $ is normal. If $ Y $ and $ Z $ are independent and normally distributed with equal variances, the test for the alternative choice $ {\mathsf P} ( Y < T) < {\mathsf P} ( Z < T) $ or $ {\mathsf P} ( Y \langle T) \rangle {\mathsf P} ( Z < T) $( in this case $ s( r) \equiv r $) is asymptotically equally as strong as the Student test. Introduced by B.L. van der Waerden [1].
References
[1] | B.L. van der Waerden, "Order tests for the two-sample problem and their power" Proc. Kon. Nederl. Akad. Wetensch. A , 55 (1952) pp. 453–458 |
[2] | B.L. van der Waerden, "Mathematische Statistik" , Springer (1957) |
[3] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
Comments
References
[a1] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
[a2] | M.G. Kendall, A. Stuart, "The advanced theory of statistics" , 2. Inference and relationship , Griffin (1979) |
Van der Waerden test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Van_der_Waerden_test&oldid=18157