|
|
Line 1: |
Line 1: |
− | ''of a function''
| + | <!-- |
| + | p0715301.png |
| + | $#A+1 = 39 n = 0 |
| + | $#C+1 = 39 : ~/encyclopedia/old_files/data/P071/P.0701530 Parametric representation |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The specification of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715301.png" />, say defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715302.png" />, by means of a pair of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715303.png" />, say on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715304.png" />, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715305.png" /> has a single-valued inverse <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715306.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715307.png" />, that is, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715308.png" />,
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p0715309.png" /></td> </tr></table>
| + | ''of a function'' |
| | | |
− | Example. The pair of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153012.png" />, is a parametric representation of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153014.png" />.
| + | The specification of a function $ f $, |
| + | say defined on $ [ a, b] $, |
| + | by means of a pair of functions $ \phi , \psi $, |
| + | say on $ [ \alpha , \beta ] $, |
| + | for which $ \phi : [ \alpha , \beta ] \rightarrow [ a, b] $ |
| + | has a single-valued inverse $ \phi ^ {-} 1 : [ a, b] \rightarrow [ \alpha , \beta ] $ |
| + | such that $ f = \psi \circ \phi ^ {-} 1 $, |
| + | that is, for any $ x \in [ a, b] $, |
| | | |
− | If at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153015.png" /> a parametric representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153016.png" /> is differentiable, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153018.png" /> are differentiable, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153019.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153020.png" /> is differentiable at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153022.png" />. Furthermore, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153024.png" /> have at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153025.png" /> derivatives of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153027.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153028.png" /> has a derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153029.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153030.png" />, which is a fractional-rational function of the derivatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153032.png" /> of orders <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153034.png" />, where in the denominator there stands the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153035.png" />-th power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153036.png" />; for example,
| + | $$ |
| + | f( x) = \psi [ \phi ^ {-} 1 ( x)]. |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153037.png" /></td> </tr></table>
| + | Example. The pair of functions $ x = \cos t $, |
| + | $ y = \sin t $, |
| + | $ 0 \leq t \leq \pi $, |
| + | is a parametric representation of the function $ y = \sqrt {1- x ^ {2} } $, |
| + | $ - 1 \leq x \leq 1 $. |
| | | |
| + | If at a point $ t _ {0} \in [ \alpha , \beta ] $ |
| + | a parametric representation of $ f $ |
| + | is differentiable, that is, $ \phi $ |
| + | and $ \psi $ |
| + | are differentiable, and if $ \phi ^ \prime ( t _ {0} ) \neq 0 $, |
| + | then $ f $ |
| + | is differentiable at $ x _ {0} = \phi ( t _ {0} ) $ |
| + | and $ f ^ { \prime } ( x _ {0} ) = \psi ^ \prime ( t _ {0} )/ \phi ^ \prime ( t _ {0} ) $. |
| + | Furthermore, if $ \phi $ |
| + | and $ \psi $ |
| + | have at $ t _ {0} $ |
| + | derivatives of order $ n $, |
| + | $ n = 2, 3 \dots $ |
| + | then $ f $ |
| + | has a derivative of order $ n $ |
| + | at $ x _ {0} $, |
| + | which is a fractional-rational function of the derivatives of $ \phi $ |
| + | and $ \psi $ |
| + | of orders $ k $, |
| + | $ k = 1 \dots n $, |
| + | where in the denominator there stands the $ ( 2n- 1) $- |
| + | th power of $ \phi ^ \prime ( t _ {0} ) $; |
| + | for example, |
| | | |
| + | $$ |
| + | f ^ { \prime\prime } ( x _ {0} ) = |
| + | \frac{\psi ^ {\prime\prime} ( t _ {0} ) \phi ^ \prime ( t _ {0} ) - \psi |
| + | ^ \prime ( t _ {0} ) \phi ^ {\prime\prime} ( t _ {0} ) }{[ \phi ^ \prime ( t _ {0} )] ^ {3} } |
| + | . |
| + | $$ |
| | | |
| ====Comments==== | | ====Comments==== |
− | The functions need not be real, the same as above holds for complex functions (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071530/p07153039.png" />). | + | The functions need not be real, the same as above holds for complex functions (i.e. $ f: D \rightarrow \mathbf C $, |
| + | $ D \subset \mathbf C $). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Calculus" , '''1–2''' , Blaisdell (1967)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Calculus" , '''1–2''' , Blaisdell (1967)</TD></TR></table> |
of a function
The specification of a function $ f $,
say defined on $ [ a, b] $,
by means of a pair of functions $ \phi , \psi $,
say on $ [ \alpha , \beta ] $,
for which $ \phi : [ \alpha , \beta ] \rightarrow [ a, b] $
has a single-valued inverse $ \phi ^ {-} 1 : [ a, b] \rightarrow [ \alpha , \beta ] $
such that $ f = \psi \circ \phi ^ {-} 1 $,
that is, for any $ x \in [ a, b] $,
$$
f( x) = \psi [ \phi ^ {-} 1 ( x)].
$$
Example. The pair of functions $ x = \cos t $,
$ y = \sin t $,
$ 0 \leq t \leq \pi $,
is a parametric representation of the function $ y = \sqrt {1- x ^ {2} } $,
$ - 1 \leq x \leq 1 $.
If at a point $ t _ {0} \in [ \alpha , \beta ] $
a parametric representation of $ f $
is differentiable, that is, $ \phi $
and $ \psi $
are differentiable, and if $ \phi ^ \prime ( t _ {0} ) \neq 0 $,
then $ f $
is differentiable at $ x _ {0} = \phi ( t _ {0} ) $
and $ f ^ { \prime } ( x _ {0} ) = \psi ^ \prime ( t _ {0} )/ \phi ^ \prime ( t _ {0} ) $.
Furthermore, if $ \phi $
and $ \psi $
have at $ t _ {0} $
derivatives of order $ n $,
$ n = 2, 3 \dots $
then $ f $
has a derivative of order $ n $
at $ x _ {0} $,
which is a fractional-rational function of the derivatives of $ \phi $
and $ \psi $
of orders $ k $,
$ k = 1 \dots n $,
where in the denominator there stands the $ ( 2n- 1) $-
th power of $ \phi ^ \prime ( t _ {0} ) $;
for example,
$$
f ^ { \prime\prime } ( x _ {0} ) =
\frac{\psi ^ {\prime\prime} ( t _ {0} ) \phi ^ \prime ( t _ {0} ) - \psi
^ \prime ( t _ {0} ) \phi ^ {\prime\prime} ( t _ {0} ) }{[ \phi ^ \prime ( t _ {0} )] ^ {3} }
.
$$
The functions need not be real, the same as above holds for complex functions (i.e. $ f: D \rightarrow \mathbf C $,
$ D \subset \mathbf C $).
References
[a1] | T.M. Apostol, "Calculus" , 1–2 , Blaisdell (1967) |