Namespaces
Variants
Actions

Difference between revisions of "Hilbert kernel"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
h0473001.png
 +
$#A+1 = 4 n = 0
 +
$#C+1 = 4 : ~/encyclopedia/old_files/data/H047/H.0407300 Hilbert kernel
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The kernel of the [[Hilbert singular integral|Hilbert singular integral]], i.e. the function
 
The kernel of the [[Hilbert singular integral|Hilbert singular integral]], i.e. the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047300/h0473001.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm cotan}  {
 +
\frac{x - s }{2}
 +
} ,\ \
 +
0 \leq  x, s \leq  2 \pi .
 +
$$
  
 
The following simple relation holds between the Hilbert kernel and the [[Cauchy kernel|Cauchy kernel]] in the case of the unit circle:
 
The following simple relation holds between the Hilbert kernel and the [[Cauchy kernel|Cauchy kernel]] in the case of the unit circle:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047300/h0473002.png" /></td> </tr></table>
+
$$
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047300/h0473003.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047300/h0473004.png" />.
 
  
 +
\frac{dt }{t - \tau }
 +
  =  {
 +
\frac{1}{2}
 +
}
 +
\left (  \mathop{\rm cotan}  {
 +
\frac{x - s }{2}
 +
} + i \right )  dx,
 +
$$
  
 +
where  $  t = e  ^ {ix} $,
 +
$  \tau = e  ^ {is} $.
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.L. Moiseiwitsch,  "Integral equations" , Longman  (1977)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.L. Moiseiwitsch,  "Integral equations" , Longman  (1977)</TD></TR></table>

Revision as of 22:10, 5 June 2020


The kernel of the Hilbert singular integral, i.e. the function

$$ \mathop{\rm cotan} { \frac{x - s }{2} } ,\ \ 0 \leq x, s \leq 2 \pi . $$

The following simple relation holds between the Hilbert kernel and the Cauchy kernel in the case of the unit circle:

$$ \frac{dt }{t - \tau } = { \frac{1}{2} } \left ( \mathop{\rm cotan} { \frac{x - s }{2} } + i \right ) dx, $$

where $ t = e ^ {ix} $, $ \tau = e ^ {is} $.

Comments

References

[a1] B.L. Moiseiwitsch, "Integral equations" , Longman (1977)
How to Cite This Entry:
Hilbert kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_kernel&oldid=18062
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article