Namespaces
Variants
Actions

Difference between revisions of "Leray spectral sequence"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
l0581901.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/L058/L.0508190 Leray spectral sequence,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''spectral sequence of a continuous mapping''
 
''spectral sequence of a continuous mapping''
  
A spectral sequence connecting the cohomology with values in a sheaf of Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581901.png" /> on a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581902.png" /> with the cohomology of its direct images <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581903.png" /> under a continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581904.png" />. More precisely, the second term of the Leray spectral sequence has the form
+
A spectral sequence connecting the cohomology with values in a sheaf of Abelian groups $  {\mathcal F} $
 +
on a topological space $  H $
 +
with the cohomology of its direct images $  f _ {q} ( {\mathcal F} ) $
 +
under a continuous mapping $  f : X \rightarrow Y $.  
 +
More precisely, the second term of the Leray spectral sequence has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581905.png" /></td> </tr></table>
+
$$
 +
E _ {2} ^ {p , q }  = H  ^ {p} ( Y , f _ {q} ( {\mathcal F} ) ) ,
 +
$$
  
and its limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581906.png" /> is the bigraded group associated with a filtration of the graded group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581907.png" />. The construction of the Leray spectral sequence can be generalized to cohomology with support in specified families. In the case of locally compact spaces and cohomology with compact support, the Leray spectral sequence was constructed by J. Leray in 1946 (see [[#References|[1]]], [[#References|[2]]]).
+
and its limit $  E _  \infty  $
 +
is the bigraded group associated with a filtration of the graded group $  H  ^ {*} ( X , {\mathcal F} ) $.  
 +
The construction of the Leray spectral sequence can be generalized to cohomology with support in specified families. In the case of locally compact spaces and cohomology with compact support, the Leray spectral sequence was constructed by J. Leray in 1946 (see [[#References|[1]]], [[#References|[2]]]).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581908.png" /> is the constant sheaf corresponding to an Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l0581909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819010.png" /> is the projection of the locally trivial fibre bundle with fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819011.png" /> and the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819012.png" /> is locally contractible, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819013.png" /> are locally constant sheaves and the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819014.png" /> takes a particularly simple form.
+
If $  {\mathcal F} = A $
 +
is the constant sheaf corresponding to an Abelian group $  A $,  
 +
$  f $
 +
is the projection of the locally trivial fibre bundle with fibre $  F $
 +
and the space $  Y $
 +
is locally contractible, then the $  f _ {q} ( {\mathcal F} ) $
 +
are locally constant sheaves and the term $  E _ {2} $
 +
takes a particularly simple form.
  
The condition of local contractibility can be replaced by other topological conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819017.png" /> (for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819018.png" /> is locally compact, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058190/l05819019.png" /> is compact).
+
The condition of local contractibility can be replaced by other topological conditions on $  X $,  
 +
$  Y $,  
 +
$  F $(
 +
for example, $  Y $
 +
is locally compact, $  F $
 +
is compact).
  
 
Using singular cohomology, for any Serre fibration with path-connected fibres one can construct an analogue of the Leray spectral sequence that has all the properties listed above of the Leray spectral sequence of a locally trivial fibre bundle (the Serre spectral sequence). There is an analogous spectral sequence in singular homology.
 
Using singular cohomology, for any Serre fibration with path-connected fibres one can construct an analogue of the Leray spectral sequence that has all the properties listed above of the Leray spectral sequence of a locally trivial fibre bundle (the Serre spectral sequence). There is an analogous spectral sequence in singular homology.
Line 15: Line 47:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J. Leray,  "L'anneau spectral et l'anneau fibré d'homologie d'un espace localement compact et d'une application continue"  ''J. Math. Pures Appl.'' , '''29'''  (1950)  pp. 1–139</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Leray,  "L'homologie d'un espace fibré dont la fibre est connexe"  ''J. Math. Pures Appl.'' , '''29'''  (1950)  pp. 169–213</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Godement,  "Topologie algébrique et théorie des faisceaux" , Hermann  (1958)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S.-T. Hu,  "Homotopy theory" , Acad. Press  (1959)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J. Leray,  "L'anneau spectral et l'anneau fibré d'homologie d'un espace localement compact et d'une application continue"  ''J. Math. Pures Appl.'' , '''29'''  (1950)  pp. 1–139</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Leray,  "L'homologie d'un espace fibré dont la fibre est connexe"  ''J. Math. Pures Appl.'' , '''29'''  (1950)  pp. 169–213</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R. Godement,  "Topologie algébrique et théorie des faisceaux" , Hermann  (1958)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S.-T. Hu,  "Homotopy theory" , Acad. Press  (1959)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.W. Whitehead,  "Elements of homotopy theory" , Springer  (1978)  pp. 228</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.P. Serre,  "Homologie singulière des espaces fibrés. Applications"  ''Ann. of Math. (2)'' , '''54'''  (1951)  pp. 425–505</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.W. Whitehead,  "Elements of homotopy theory" , Springer  (1978)  pp. 228</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.P. Serre,  "Homologie singulière des espaces fibrés. Applications"  ''Ann. of Math. (2)'' , '''54'''  (1951)  pp. 425–505</TD></TR></table>

Latest revision as of 22:16, 5 June 2020


spectral sequence of a continuous mapping

A spectral sequence connecting the cohomology with values in a sheaf of Abelian groups $ {\mathcal F} $ on a topological space $ H $ with the cohomology of its direct images $ f _ {q} ( {\mathcal F} ) $ under a continuous mapping $ f : X \rightarrow Y $. More precisely, the second term of the Leray spectral sequence has the form

$$ E _ {2} ^ {p , q } = H ^ {p} ( Y , f _ {q} ( {\mathcal F} ) ) , $$

and its limit $ E _ \infty $ is the bigraded group associated with a filtration of the graded group $ H ^ {*} ( X , {\mathcal F} ) $. The construction of the Leray spectral sequence can be generalized to cohomology with support in specified families. In the case of locally compact spaces and cohomology with compact support, the Leray spectral sequence was constructed by J. Leray in 1946 (see [1], [2]).

If $ {\mathcal F} = A $ is the constant sheaf corresponding to an Abelian group $ A $, $ f $ is the projection of the locally trivial fibre bundle with fibre $ F $ and the space $ Y $ is locally contractible, then the $ f _ {q} ( {\mathcal F} ) $ are locally constant sheaves and the term $ E _ {2} $ takes a particularly simple form.

The condition of local contractibility can be replaced by other topological conditions on $ X $, $ Y $, $ F $( for example, $ Y $ is locally compact, $ F $ is compact).

Using singular cohomology, for any Serre fibration with path-connected fibres one can construct an analogue of the Leray spectral sequence that has all the properties listed above of the Leray spectral sequence of a locally trivial fibre bundle (the Serre spectral sequence). There is an analogous spectral sequence in singular homology.

References

[1] J. Leray, "L'anneau spectral et l'anneau fibré d'homologie d'un espace localement compact et d'une application continue" J. Math. Pures Appl. , 29 (1950) pp. 1–139
[2] J. Leray, "L'homologie d'un espace fibré dont la fibre est connexe" J. Math. Pures Appl. , 29 (1950) pp. 169–213
[3] R. Godement, "Topologie algébrique et théorie des faisceaux" , Hermann (1958)
[4] S.-T. Hu, "Homotopy theory" , Acad. Press (1959)

Comments

References

[a1] G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) pp. 228
[a2] J.P. Serre, "Homologie singulière des espaces fibrés. Applications" Ann. of Math. (2) , 54 (1951) pp. 425–505
How to Cite This Entry:
Leray spectral sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leray_spectral_sequence&oldid=17934
This article was adapted from an original article by D.A. Ponomarev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article