Namespaces
Variants
Actions

Difference between revisions of "Semi-chain module"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
A [[Module|module]] which can be decomposed as a direct sum of chain submodules (see [[Chain module|Chain module]]). All left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083970/s0839701.png" />-modules are semi-chain modules if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083970/s0839702.png" /> is a generalized [[Uniserial ring|uniserial ring]].
+
{{TEX|done}}
 +
A [[Module|module]] which can be decomposed as a direct sum of chain submodules (see [[Chain module|Chain module]]). All left $R$-modules are semi-chain modules if and only if $R$ is a generalized [[Uniserial ring|uniserial ring]].
  
  
  
 
====Comments====
 
====Comments====
A chain module is also called a uniserial module; correspondingly, a semi-chain module can also be called a semi-uniserial module. In [[#References|[a1]]] the terms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083970/s0839704.png" />-uniserial and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083970/s0839706.png" />-uniserial are used for a direct sum of uniserial modules (respectively, a finite direct sum of uniserial modules).
+
A chain module is also called a uniserial module; correspondingly, a semi-chain module can also be called a semi-uniserial module. In [[#References|[a1]]] the terms $\Sigma$-uniserial and $\sigma$-uniserial are used for a direct sum of uniserial modules (respectively, a finite direct sum of uniserial modules).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Faith,  "Algebra" , '''II. Ring theory''' , Springer  (1976)  pp. Chapt. 25</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Faith,  "Algebra" , '''II. Ring theory''' , Springer  (1976)  pp. Chapt. 25</TD></TR></table>

Latest revision as of 16:40, 1 May 2014

A module which can be decomposed as a direct sum of chain submodules (see Chain module). All left $R$-modules are semi-chain modules if and only if $R$ is a generalized uniserial ring.


Comments

A chain module is also called a uniserial module; correspondingly, a semi-chain module can also be called a semi-uniserial module. In [a1] the terms $\Sigma$-uniserial and $\sigma$-uniserial are used for a direct sum of uniserial modules (respectively, a finite direct sum of uniserial modules).

References

[a1] C. Faith, "Algebra" , II. Ring theory , Springer (1976) pp. Chapt. 25
How to Cite This Entry:
Semi-chain module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-chain_module&oldid=17890
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article